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Abstract

This research has explored the problems of moving through an environment while avoiding obstacles,
approaching and stably contacting a surface in that environment, and applying force to the surface. To this
end, a theoretical and experimental analysis of the following topics has been performed: explicit force and
impedance control, impact control, and obstacle avoidance and approach with artificial potentials.

The issue of force control has been addressed in two ways. First, a dynamic model of the manipulator /
sensor / environment system has been theoretically developed and experimentally verified. With this model
it has been possible to perform the second step of a detailed analysis of previously proposed force control
schemes. Moreover, a theoretical framework has been developed which encompasses most control schemes
proposed to date, including impedance control and explicit force control. This framework has provided a
means by which to compare the stability properties of the various schemes. This theoretical analysis has been
supported by experimental implementation and analysis on the CMU DDarm Il.

The theoretical framework developed for force control, also yielded new insight into the problem of
transition from motion through the environment to contact with it. During this transition there is impact. The
developed force control framework revealed a new method of effectively controlling the impact phase and
providing stable transition. This scheme has also been successfully implemented on the CMU DDarm |I.

To move through an obstructed environment (possibly with moving obstacles) a local obstacle avoidance
scheme based on superquadric artificial potentials has been developed. This potential formulation blends
the best features of previous ones by eliminating local minima for simple environments, while not unneces-
sarily removing some parts of workspace. Two forms of the potential energy function provide either object
avoidance or approach capability. This scheme has been implemented on the CMU DDarm Il and has shown
successful avoidance of multiple obstacles in real-time.
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Chapter 1

Introduction

A very general description of a robot manipulator is a non-rigid mechanical assembly with actuating devices
that exert forces along the degrees of freedom. Usually the assembly is composed of rigid links, but increas-
ingly flexible links are being employed. Usually the links are made of metal, but alternative materials are
sometimes utilized. Usually the links are connected serially (like the bones of an ‘arm’), but sometimes there
are parallel connections. Usually the connections are rotary, but sometimes they are prismatic. Usually the
forces are exerted by electric motors, but often there are hydraulic or pneumatic actuation systems. Inde-
pendent of the particular manifestation of the robot manipulator, the problem that remairtoigttolit, or

dictate its behavior. More specifically: given a manipulator, how should the actuating devices be commanded,
such that the proper forces are exerted along the degrees of freedom, resulting in a desired behavior?

Preliminary to answering the control question is the need for a description of the desired behavior. In
general, the desired behavior of a manipulator is to do useful work on the environmentpanipulatat.

(The environment being everything that is not part of the robot, and within its reach.) By formal definition
and heuristic description, work always entails force and motion. Thus, the manipulator must move to specific
locations in its environment and impart specific forces. There are three distinct phases to this process: motion
through the environment, impact with the environment, and exertion of forces on the environment. The
purpose of this dissertation is to examine ways to provide a manipulator with the ability to perform well in
each of these phases, and to smoothly move from one phase to another.

Motion through the environment can be completely described in terms of the position of the manipulator.
Impact and forceful interaction with the environment require a description in terms of force as well as posi-
tion. Thus we can see that a specific description of the desired behavior of a manipulator can be provided
in terms of the positions it occupies and possibly the forces it exerts. (The derivatives of these quantities,
such as velocity, may be obtained from them directly.) We can therefore rephrase the above statement of the
control problem: How should the actuating devices be commanded such that the manipulator occupies the
desired position and exerts the desired force on the environment?

Implicit in the statement of this problem is the ability to monitor the actual position of the manipulator
and the forces exerted by it. If this is not done, it is impossible to determine the performance of the robot
arm. However, if this is done the commands to the actuating devices are a function not only of the desired
position and force values, but also of the measured ones. This process is knfeeallaack control The
function that relates the desired and measured values to the actuation command is cabedrtiler Thus,
it is the controller that is key to our problem, which can be rephrased once again: What are the best position
and force controllers for robot manipulators?

The qualitative description of ‘best’ is usually supported with many quantitative measurements: stability,
rise time, overshoot, settling time, steady-state error, tracking error, algorithmic complexity, control rate, etc.
Usually there is a trade-off in performance between each of these. And how each of these should relate to
the desired task is often unclear. What usually is clear is whether a particular controller is sufficient for the
desired task. An appraisal of this sufficiency can usually be obtained from the above criteria.
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Figure 1.1 Position control block diagram.
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Figure 1.2 Explicit force control block diagram.

In an attempt to achieve sufficiency, simple schemes are usually tried first. It is common that the controller
be composed of a simple differencing between the desired and measured values. This difference may then be
multiplied by a proportionality constant (P control), differentiated (D control), and/or integrated (I control).
PID control is often incorporated into more sophisticated schemes, yielding better results.

Thus, when position control was historically selected first to be investigated, PID position controllers were
the choice. However, position controllers have evolved from simple PID joint controllers to very sophisti-
cated algorithms that include dynamic model calculations, Cartesian space projections of errors, velocity and
acceleration feedback, adaptive gains, optimization, etc. Figure 1.1 shows the block diagram of a generic
position control scheme. Each of the above controllers are represented by the block lettered G.

The state of the art of manipulator position control far exceeds that of manipulator force control. In
fact, position controlled manipulators can be used to perform some tasks that require interaction with the
environment, such as pick and place operations and spot welding. However, these allowed tasks usually
require that the manipulator does not contact a stiff, mechanically grounded environment. Such contact can
result in large reaction forces exerted on the arm for very small position errors. Since many manipulators are
not backdriveable because of their gearing, these reaction forces will cause damage to the manipulator. Also,
the environment may be damaged by this excessive force. One simplistic solution is to insert mechanical
compliance between the position controlled manipulator and the environment. However, this compliance is
open loop, and adds uncontrolled degrees of freedom to the manipulator structure.

Further, there are a whole class of tasks that seem to implicitly require force control of the manipulator:
pushing, scraping, grinding, pounding, polishing, twisting, etc. Thus, force control of the manipulator be-
comes necessary in at least one of the degrees of freedom of the manipulator; the other degrees of freedom
remain position controlled. Mason formalized this idea and called it Hybrid Control [45]. Simply put, the
manipulator should be force controlled in directions in which the position is constrained by environmental
interaction, and position controlled in all orthogonal directions.

The Hybrid Control formalism does not specify what particular type of position or force control should
be used. It only partitions the space spanned by the total degrees of freedom into one subspace in which po-
sition control is employed, and another in which force control is employed. In the position control subspace,
the previously mentioned strategies remain successful. However, in the force control subspace, two main
conceptual choices have emergegkplicit force controland impedance controlFigures 1.2 and 1.3 are
simple block diagrams of these two types of control schemes. The major difference between these schemes
is the commanded value: explicit force control requires commanded force, while impedance control requires
commanded position. In order for these to be feedback controllers, explicit force control needs force mea-
surement, while impedance control needs position measurement. In addition, impedance control requires
force measurement — without it an impedance controller reduces to a position controller.

These force control strategies must perform two specific functions. First, they must pirayidet con-
trol: stability during the transient phase of impact with the environment. Second, they must pfardee
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Figure 1.3 Impedance control block diagram.

trajectory trackingapability. It is not necessary or expected that a controller which is best for impact control
is also best for force tracking. The study of force controllers in this thesis will conclusively determine which
form is best for each function.

Ideally, an explicit force controller attempts to make the manipulator act as pure force source, independent
of position. Like position control, the obvious first choice has been some manifestation of PID control (i.e.
P, PD, PI, etc.). These have met with varying amounts of success depending on the characteristics of the
particular actuators, arm links, sensor, and environment. All of these components have dynamics which may
be excited during constrained motion. Therefore, considering the success of complex position controllers, it
may be valuable to include some of the following in force control algorithms: extensive models of the above
dynamic components (possibly non-linear), adaptive compensation, friction compensation, etc. But these
more complex control schemes will probably include PID control within them, and the best form of PID has
not been conclusively shown before. Therefore, much of this thesis has concentrated on understanding PID
control as an explicit force controller.

Alternatively, impedance control has been presented as a method of stably interacting with the environ-
ment. This is achieved by providing@namicrelationship between the robot’s position and the force it
exerts. A complete introduction to impedance control is beyond the scope of this discussion and the reader
is referred to the previous work of other researchers [22, 28]. The basic tenet of impedance control is that
the arm should be controlled so that it behaves as a mechanical impedance to positional constraints imposed
by the environment. This means that the force commanded to the actuators is dependent on its position:
f = Z(z), whereZ may be a function or an operator. If the impedance is linear, it can be represented in the
Laplace domain ag'(s) = Z(s)X (s). (For comparison, an equivalent and possibly more familiar electrical
impedance equation relates voltage to curréfts) = Z(s)i(s).) The resultant behavior of the manipulator
is obvious: if it is unconstrained it will accelerate; if it is constrained the forces from the actuators will be
transmitted through the arm and exerted on the environment.

In the first case of no environmental interaction, the impedance relation may be used to dictate the force
exerted on the manipulator by its actuators as a function of the position of the end effector. This force as
a function of position may be fully described in terms of a potential field. Sophisticated position control
strategies can be devised by suitable constructicartificial potentialghat model the environment yet do
not really exist in it. This thesis presents a new strategy based on superquadric artificial potentials that is
useful for object avoidance and approach.

However, the artificial potential formulation as a position control method is essertjaly loopmpedance
control — open loop with respect to real, measurable forces. When dealing with the second case of physical
environmental interaction, force feedback must be used in the control of the mechanical impedance of the
manipulator. For linear impedance relationships, the force feedback loop may be separated as in Figure 1.4.
Further, it can be seen that this figure may be modified as in Figure 1.5 to show that the force feedback loop
is part of an internal explicit force controller. Thus, an impedance controller that utilizes force feedback
contains an explicit force controller.

Figure 1.5, as simple as it may be, summarizes this entire thesis. First, it can be seen that an arm /
environment model is necessary for the plant of the system. This model is developed in the next chapter.
Second, an explicit force controller is present in the system. A theoretical analysis of a complete spectrum of
explicit force control strategies is given in Chapter 3. Third, the outer position loop indicates that this is an
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Figure 1.5 Impedance control block diagram redrawn to show the inner explicit force controller.

impedance controller. A theoretical analysis of a complete spectrum of impedance control strategies is given

in Chapter 4. Fourth, the presence of both force and position state variables indicates that the system must
cope with moving through the environment to contact with it. The control of the intervening period of impact

is discussed in Chapter 5. Chapter 6 provides experimental results which strongly support the conclusions
of the force, impedance, and impact control chapters. Also, the structure of the controller does not preclude

the substitution of a calculated (instead of measured) quantity for the feedback force. Chapter 7 presents a
method of object avoidance and approach that relies on such artificial forces.

Finally, it is noteworthy that the order of presentation in this dissertation is the reverse of the physical
sequence of motion through the environment, impact, and force exertion. The inversion of the order was
apparent in the above breakdown of the components of the controller block diagram of Figure 1.5. This
reverse order permits the understanding of each underlying layer of the problem in turn, facilitating the step
by step understanding of a complete problem solution.



Chapter 2

The Arm, Sensor, and Environment
Model

2.1 Introduction

In the previous chapter a general description of controllers was given without any specific description of the
arm or environment that formed the plant to be controlled. To discuss the controllers more specifically, it is
first necessary to develop a detailed model of the arm, sensor, and environment system. Also, it is necessary
to convincingly demonstrate that this model is an accurate and sufficient representation of the plant for which
the controller will be developed. Previous research has not experimentally evaluated the correctness of the
plant model or only done so on a one degree of freedom (DOF) system [13, 14, 31, 74]. In this chapter,
models of increasing complexity will be discussed. Then, experimentation with a six DOF manipulator will
show the validity and sufficiency of the chosen arm / sensor / environment model.

2.2 The Arm Model

A full description of the dynamics of a serial, DOF, rigid-link robot arm is provided by the following
equation: ) ) )
T=D(0)0 + h(8,0) + g(0) + V(0) (2.1)

where is a vector of the joint torqued) is the inertia matrix,h is a vector of the nonlinear Coriolis
and centripetal forceg, is a vector of the gravitational forceg;, is a vector of the passive damping forces
(possible non-linear), antlis a vector of the angular joint positions. All vectors arg 1, all matrices: x n.

A full development of this equation can be found in [16].

In this discussion it is assumed tlyatandV” either do not exist or are eliminated by some form of active
compensation. For an earth based rolgahay be compensated for by a feedforward signal; a space based
arm, however, would need no such compensation. For a direct drivé/agimes not exist; for a viscously
damped arm it may be eliminated by active feedback [10].

Thus, without any loss of generality, the manipulator may be represented simply by an equation that
includes joint torques, inertia, and acceleration:

7 = D(0)8 + h(8,8) (2.2)

In Section 4.4.3 it will be shown that if the arm is not in a singular configuration, the inverse of the Jacobian
may be used to express this dynamic relationship in Cartesian space as:

F = A0)i + u(6,6) (2.3)
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arm model.
where
A@) = (JD71JT)! (2.4)
and . .. .
w@,0) = —AJo+ (JV)"h(s,8). (2.5)

Sincey. is a function ofd andé it may be actively compensated for in the same manngraasiV” above. If
the arm is constrained artds small, ther may be ignored [28, 19]. Either way, a linearDOF model in
Cartesian space is obtained.

This model is still more complex than necessary. Sifidée not usually diagonal, the forces and accelera-
tions from different directions are coupled. Howevecan be diagonalized. In order to simplify the analysis
it will be assumed that the Cartesian end effector frame is aligned with the eigenvectarsToius, each
DOF may be considered independently. Although a translational DOF is used for the following discussions,
the results are directly applicable to rotational DOFs as well.

2.2.1 Arm Composed of a Single Mass

The initial model chosen for analysis is a second order lumped parameter system which has discrete dynamic
attributes that include mass, damping, and stiffness. Figure 2.1 shows the arm represented asna mass,
acted upon by a forcef;,, and at a positiony. This simple system is represented by the equation:

mi = . (2.6)

which has the frequency domain transfer function:
= =— 2.7)

Figure 2.2 shows a block diagram for this system.

2.2.2 Arm With Damping

An initial modification to this model is performed by explicit inclusion of damping. As mentioned earlier,
damping may be naturally present in the arm, may be actively included, or both. Figure 2.3 shows a physical
model of the system. The equation of motion is:

mi = f—(c+ K,)& (2.8)
wherec is the natural damping anid,, is the active damping. The transfer function for this system is:

X 1
g } 2.9
F  ms?>+(c+K,)s (2.9)

The block diagram for this system is shown in Figure 2.4. Since the experimental studies were with the CMU
DD Arm Il which has practically no natural damping, only the active damping case() will be considered
unless otherwise noted.
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Figure 2.5 Single mass arm model with damp- Figure 2.6. Block diagram for single mass arm
ing and stiffness. with damping and stiffness.

2.2.3 Arm With Damping and Stiffness

Another modification to the above model is the inclusion of stiffness. Again, the arm may have stiffness
due to its mechanical structure or due to active stiffness control. Since the natural stiffness is due to the
flexibility of the materials that make up the arm it is typically much larger than the active stiffness. Also, if
the manipulator has at least six Cartesian DOF, there is no direction in which the stiffness is only composed
of mechanical stiffness. Thus, this natural stiffness is usually ignored. The next section will discuss a case in
which it is not. Note, this is the dynamic situation as viewed by the actuators and does not include nonlinear
phenomena such as stiction. For instance, if the gearing of a manipulator is not back-driveable, the arm may
be mechanically very stiff from the environment. Many actuators, including direct and harmonic drives, are
back-driveable however.

The active stiffness of a manipulator is usually provided by proportional control of the position. In this
case, the desired actuator force is givenfby K, (zo — ), wherez, is the commanded position, aiigd, is
position gain of the active controller and determines the stiffness of the system. Figure 2.5 shows a physical
model of the system. The equation of motion is:

mE = Kp(zo — x) — Ky (2.10)
the corresponding transfer function for this system is:

X K
—= P . (2.11)
Xo ms?+ Kys+ K,

which is depicted in the block diagram shown in Figure 2.6.
It is worth noting that the above does not necessarily have to be represented as a position controlled
system. Iff = K,z is considered to be the desired actuator force, then the equation of motion is:

mi = f — Kpx — K& (2.12)
A clear physical diagram of this is not really possible. However, using the transfer function for this system,

X 1
== . 2.13
F ms2+Kys+ K, (2.13)
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it can be shown that the controller block diagram becomes Figure 2.7. This representation will be useful
later.

2.3 Including Higher Order Arm Dynamics

Representing the arm as a second order system prevents the modeling of any higher order modes of vibration.
It has been recognized by some researchers that the arm has higher order dynamics that may need to be
modeled [13, 14, 53, 74]. Figure 2.8 shows a two mass, fourth order model of a robot arm. The extra
dynamics provided b¥- andc, exist within the actuators or the arm linkage. When included in the following
discussions, it is assumed that these dynamics are from the linkage, since the CMU DD Arm Il has no actuator
dynamics. Therefore, the dynamics represent the manipulator beyond the actuator.

For the position controlled arm with rigid links that is not interacting with the environment, this case is
meaningless for two reasons. First the stiff links will not have their dynamics excited by the manipulator
motion in free space. Second, the actuation forces are usually based on the position of a degree of freedom
read at the actuator location. For example, joint resolvers are mounted on the motor axis. The actual location
of the end effector is never known, but assumed to be correctly calculated by the forward kinematics. If the
links are flexed, the joint positions may erroneously indicate that the arm’s end effector is positioned correctly.
Thus, the actuation forces in the block model depend on the position ofimagske varying position ofn.
does not effect the controller (except by the disturbance of the reaction forces transmitted ftyrandh,).

The link flexibilities may become important if the arm is force controlled and if the force measurements
are made at the endpoint of the arm. This issue will be further discussed below after the environment and
force sensor models have been introduced. Until then, the second order arm model will be used.

2.4 Arm Plus Environment Model

Now that a model of the manipulator has been introduced, it is necessary to discuss an environmental model.
Some researchers have made no assumptions about the structure of the environment, and have assumed
instead that interaction with it will produce measurable forces [54, 24, 22, 28, 18, 43]. Other researchers,
usually those working with a compliant system or sensor, have modelled the environment as a mechanical
ground [56, 71]. Still others have recognized that the environment has some compliance, and therefore have
modelled it as a simple stiffness [69, 70, 50, 31, 51, 12, 26, 36, 73, 25, 11]. Finally, other researchers have
modeled the environment as a complete second order system with components of mass and damping, as well
as stiffness [13, 14, 28, 74]. This last form of the environmental model recognizes that the environment has
oscillatory modes of its own, but simplifies the overall analysis by only considering the first mode. Thus, the
second order model is more restrictive than just a general environment that exerts measurable force on the
arm. However, the specific representation of its dynamic components will permit a better understanding of
the interaction between the arm and the environment.

Using a second order model, it is valuable to explicitly describe the interaction of the environment with the
arm model. Figure 2.9 shows the coupled system, where:., andk, represent the modeled environmental
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Figure 2.10 Block diagram for model in Figure 2.9.

mass, damping, and stiffness, afig is the reaction force exerted by the environment on the arm. The
undisturbed position of the environmenty, is assumed to be zero without any loss of generality. The
disturbed position is the same as the arm position,

Notice that the arm mass and environmental mass are directly in contact. However, for this system to
provide force controlled interaction there must be a force sensor. Initially, it will be assumed that a ‘magic’
force sensor exists between the masses. The measured force is then equivalent to the reactfgnforte:

Also, the manipulator position is equal to the environmental positios: x,, = z.. All this implies is that the

sensor dynamics are not being modelled, which is reasonable if the arm and environment stiffnesses are much
less than that of the sensor. Since the force sensor used consists of strain gauges mounted on aluminum, it
has a very high stiffness, satisfying the assumption. In the next section the model will be expanded to include
sensor dynamics; until then it is useful to proceed with the development without them.

The model of the arm and environment can be described by the following set of equations:

m,i = f—fr— K, (2.14)
mel = fr— ket —ced (2.15)
or
(mp +me)& + (Ky +ce)t+kex = f (2.16)
med + c.& + kex = fg. (2.17)

These equations illustrate the concepts of impedance and admittance presented by Hogan [22]. In that frame-
work it can be seen that the first equation shows how the actuation foeserted on the system yields a
positionz. And complementary to this, the second equations shows that the position constriamptessed

on the environment, yields a reaction forge, Viewed in this way, it can be seen that the block diagram in
Figure 2.10 represents the system in Figure 2.9. From the block diagram, the transfer function of the system

is:
F’f’ Fm e 2 e ke
fr_Fmo_ Mes” + CeS + . (2.18)
F F (my +me)s? + (Ky + ce)s + ke
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2.5 Arm, Environment, and Sensor Model

While a very stiff force sensor may not always exhibit its dynamics, under certain circumstances they may
become important. The use of a stiff robot position controller, contact with a stiff environment, or impact
with the environment may excite the sensor dynamics. Therefore, it is sometimes necessary to include the
sensor in the model. A second order model of the sensor dynamics can be included in the previous model by
placing a spring and damper between the robot mass and environment mass, as shown in Figure 2.11. Any
mass that the sensor may have is included in either the arm or environment mass. The sensor skffness is
and its damping ig,. Also z, andz, are the robot and environment positions (that is, the positions of their
mass components). The reaction force experienced by the arm is Igel@tie negative of this force; fg,
is experienced by the environment, since the sensor spring and damper are ideal components and transmit
forces applied to them.

This modified system may be described by the following equations:

melyr = f— Kyt — ks(xy —xe) — cs(Tr — Te) (2.19)

MeZe = _ks(xe - :L'r) - Cs(j:e - :L'r) — kee — Ceile. (2.20)

These can be rewritten in terms of the reaction force as:

Meir + Koir = f— fr (2.21)
Mele + Cee + KeZe = fR (222)

and
fR = ks(wr - me) + Cs(:br - Cbe) (223)

The Laplace transforms of the above equations yields three useful intermediate transfer functions for the arm
(A4), environment £), and sensor).

X, 1

A = = 2.24
F—Fg m,.s2+ K,s ( )
X 1
E = ‘f—- - 2.25
Fr  mes?+ces+ ke ( )
Fgr
S = m = CsS + ks (226)

Thus the block diagram of the system can be constructed as shown in Figure 2.12. The transfer function for
the sensor and environmeidt), relating X, to Fg, is given by:
_Fgr S (mes? + ces + ke)(css + k)

= = = 2.27
¢ X, 1+SE  mes?+ (cs +ce)s+ (ks + ke) (2.27)
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Figure 2.13 Revision of block diagram in Figure 2.12 to show commanded force.

The dynamics of the sensor can be removéd i~ oo andk, — 0. Then the above equation reduces to:
G =mes® + ces + ke (2.28)

which is the same as the environmental transfer function alone, as shown in Figure 2.10.
Further, the entire transfer function, relatihggo Fr, may be obtained as:

Fgr AG AS

F ~ 1+A4G 1+ AS+ES

. (mes? + ces + ke)(css + ks) (2.30)
- (mes?® + (cs + ce)s + (ks + ke))(m,. 82 + ¢,.8) + (mes? + ces + ke)(css + ks) '

(2.29)

Again, the dynamics of the sensor can be removégd i co andk. — 0. The transfer function then reduces
Equation (2.18), which is just the transfer function of the system without the sensor, as expected.

Equation (2.30) is not, however, the transfer function which can be used for control purposes. This is
because the force sensor does not measure the reaction fgrdayt instead measures the deformation of
the sensor spring;, — x.. This measurement is multiplied by the spring constantto obtain the measured
force value,f,,,. The revised block diagram is shown in Figure 2.13. The revised transfer function is:

Fn Ak, B (Mmes® + ces + ke ks
F 1+ ASHES  (mes?+ (cs+ce)s+ (ks + ke))(mps2 + cp5) + (mes? + ces + ke)(css -+(-2k§?|_)
which has the same characteristic equation as before, while the numerator has only been changed by the
omission of the sensor damping. Equation (2.31) agrees with the result derived in reference [13].
Thus, a model of the coupled arm, environment, and sensor system has been established. Although this
model ignores arm dynamics, a modified interpretation of the model components can address the discrepancy.
This will be discussed in the next section.

2.6 Arm with Dynamics, Environment, and Sensor Model

Following the discussion from the previous three sections, it seems necessary to include the dynamics of the
arm and force sensor. Including both would require a sixth order model as shown in Figure 2.14. However,
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Figure 2.15 General fourth order model of arm, sensor, and environment system.

this is unnecessarily complex, and the order of the model can be reduced. As was described in Section 2.3, the
dynamics attributed to the arm are beyond the actuator. These dynamics are due to vibration of the physical
structure of the manipulator. For the case of the CMU DD Arm Il , this structure is made of aluminum. As
was described in Section 2.4 the force sensor is also made of aluminum. Neither of these physical structures
has the discrete dynamic components that have been used to represent them. Instead, they are distributed
systems whose modes of dynamic excitation have been represented by a discrete system approximation.
Since the arm structure and force sensor are of similar construction and connected physically, they should
be treated as a single unit. And since only lowest order modes of excitation have been of concern, the arm
structure and force sensor can be represented as a single second order system. Thus, the previous model can
be reduced, and represented by the general model in Figure 2.15. Similarly, the previous transfer function,
Equation (2.31) can be rewritten as:

Fn _ (mps® + c3s + k3) k2 (2.32)
F (mps?+ (ca + c3)s+ (k2 + k3))(mas? + c15) + (mps® + c3s + k3)(cas + ko) '

While this model appears to be the same as in Figure 2.11, it represents slightly different components of the
physical system.

Similar to the earlier model, the parametgssandcs represent the stiffness and damping of the environ-
ment. Also, the parameteks andc; are the stiffness and damping of the arm. As discussed previously, it is
usually assumed th&t = 0, but it is useful in the following analysis to keep this parameter in the equations
for symmetry purposes.

Unlike before, the parametet 4 represents mass of the actuator, aam¢gsensor, while the parameter
mp represents mass of the environment, seraagiarm. As described above, this overlap is due to the fact
that the arm beyond the actuator and the sensor are lumped together in a first order model. Part of their total
mass must be on either side of the spring and damper which causes any oscillation. This spring and damper
are represented s andc.. These parameters are equal to the serial addition of the stiffness and damping
from the outer arm and sensor:

1 1
kQ =T 1 Cy — ﬁ (233)

ks kouterarm Cs Couterarm
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Considering that the outer arm is made of the same material as the sensor but is longer in length, its stiffness
is just a fraction of the sensor stiffness. This is true for the damping as well. Thus,

- kouterarm _ Couterarm
ks — A Cg = 7)\ (2.34)
and, therefore,
k= (14 Nks e = (14 e (2.35)

where) is the nonnegative proportionality factor and is linearly related to the relative lengths of the outer arm
and the force sensor (assuming constant cross sectional area). Considering the relative lengths of the CMU
DD Arm Il linkage and the Lord force sensor, it is expected thatill be on the order of ten for this system.

Thus, a fourth order model has been developed for the arm, sensor, and environment system which con-
siders only first order vibrations in each of these components. Further analysis of these vibrations is presented
in the following sections.

2.7 Analysis of the Fourth Order Model

Given the model previously developed, it is necessary and important to explore its validity. To do this, a
vibrational analysis will be performed and the effects of hysteresis will be discussed. Subsequently, the
analytic results will be compared with experimental results.

2.7.1 Vibrational Analysis Without Damping

In this section a vibrational analysis of the model shown in Figure 2.15 will be performed. Similar analysis
can be found in many standard physics textbooks [58]. However, the analysis here deals with the asymmetric
case and an approximate result will be derived for the case of underdamped vibration.

First, the kinetic and potential energy of the system are:

1 . 1 .
T = 5mA:'ni+5m,ga:~23 (2.36)
1, 1 , 1,
= EklwA-Fikg(iEB—iEA) ++§k2$B (237)

Lagrange’s formulation may be used to obtain the equations of motion:

d (0L\ OL
dt <a:z:i> T om Y (2.38)

whereL = T'— V and@); are the generalized forces. Direct application yields:

maZa+ kiza — kg(ZL’B — :L'A) = —C1%4 — CQ(ii'A — :i'B) + f (239)
mpip +kixp +ke(vp —xa) = —c3ta—co(ip—Ta) (2.40)

The general solutions
zq = AyePt zp = ApePt (2.42)

are used, whergis a complex number and 4 andAg are constants. Thus, the equations may be written as:

2 + + k — < + k‘
map® +cap+ka (c2p + k2) ] [ Ta ] -0 (2.42)

—(cop + k2) mpp?® + cpp + ki B
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where
ka = ki+ko (2.43)
kg = ko+ks (2.44)
cAa = ¢+ (2.45)
cB = (o +cs. (2.46)

The modes of vibration can be obtained by ignoring the damping forces (i.€.det; = co = ¢3 = 0).
Thus, the equations reduce to the eigenvalue formulation:

ka 2 —ko
ra _'_ A
[mf*kp A ][“]:0 (2.47)
—R2

ke 2
proe mg TP TB

The determinant of the matrix yields the characteristic equation of the system:

k k kakp — k3
p2 +p<_A+_B>+7A B 2 =0, (248)
ma mpg mampg
which has the solution:
7.2
p2 _ _mBkA + makp 14 /1— dmamp (kAkB k;) ' (2.49)
2mampg (mpka +makp)

If the argument of the square root is less than one and greater tharpZenoyrely imaginary. From Equa-
tions (2.43) and (2.44) it is apparent that the tétgkp — k2 is positive. Therefore, its worst case value is
kakp — k3 — kakg. Inthis case the argument of the radical becomes:

2
dmamp (kaks) _ (mpka —makg) < 1 (2.50)

1-— ; -
(mpka +makg)” (mpka +makp)®

Thusp is a purely imaginary numbeiw, wherew is the natural frequency of the coupled system and an
eigenvalue of the equations. For the case of no robot actuator stiffless({), this reduces to:

1+, /1 Akzksmamp - (2.51)
(mBkz + mA(k2 + kg))

W2 — mpks +ma(ks + ks)

2mamp

It is useful to consider the situation whép > ks (relatively soft environment) whilé; remains zero. For
these conditions the above equation reduces to:

W n R2lma £ mp) {1 + <1 _ _Zhsmamp )} (2.52)
2mampg k2(ma +mp)?
(using the binomial expansiofl + z)" =~ (1 + nz), for smallz). The two eigenfrequencies are thus:
1 1
i) — B d e \/k2 (— + —) . (2.53)
mg +mp mag  MpB

These results make intuitive sense. The lower frequenasorresponds to the casesf, andm,; acting as
a rigid body oscillating ork; atw;. Similarly, the higher frequency, corresponds to the case wf4 and
mp oscillating out of phase on spririg, neglecting any effect of;.
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Using the above eigenvalues, the eigenvectors of the system may be obtained. Equation (2.47) provides a
relation between the components of the vectors:
(kg + kg) — mb2

= . 2.54
A s TR (2.54)

Again considering the case bf > k3, andk; = 0, the eigenvectors are obtained:

VZ[HE] V:{_mBmA] 2.55
S RS R @59

wheree is a small positive value. These vectors correspond directly to the oscillatory modes described above.
Note, these vectors are not orthogonal, which is to be expected since the matrix in Equation (2.47) is not
symmetric.

2.7.2 Vibrational Analysis With Damping

Having solved for these oscillatory modes, it is useful to look at the case with damping. In this case, the
characteristic equation may be obtained from Equation (2.42) as:

p*mamp + p*(mpca +macg) + p*(mpka +makp + cacg —c3)
+ plcgka + cakp — 2coks) + (kakp —k3) = 0 (2.56)

In general this will yield two complex solutions and their conjugates.

For the underdamped case, these poles will be close to the undamped poles, but moved slightly to the left
of the imaginary axis. For example, consider the low frequency poles. As described in the previous section
these poles represent an approximately second order system of mass equaltan g oscillating on the
springks. The addition of damping; + ¢3, to this system moves the poles to the points

C1 + C3 (Cl + 03)2 k3
= + — 2.57
b 2(ma +mp) \/4(m,4+m]3)2 (ma+mpg) ( )

or
p o tTiw (2.58)

where the decay parameteis:
c1 +c3
o= —— 2.59
2(ma +mp) ( )
andw; is given in Equation (2.53). This estimation will prove useful later in this chapter when analyzing data
of the oscillations of the real system.
The fourth order characteristic equation above may be solved exactly for its four poles. These values can

then be used in one of the following relations, which are obtained from Equation (2.42):

map® + cap + ka
TA
cop + ko
cop + kK -
mpp? + cep + kg A

(2.60)

rg =

(2.61)

rg =

Since the characteristic equation is effectively obtained by setting these two relations equal, the walue of
obtained from it must yield the ratio afg /2 4. However, this ratio has an extremely messy exact solution.
The exact solutions fgp are very complicated to begin with, and then they must be substituted in one of the
equations above. Little insight into the significance of the parameter values would be obtained from such a
brute force solution. Instead the following assumptions are made:
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1.p— fiw The system is underdamped and the eigenvalues of the
undamped system will be used.

2. ks > cow, k3 > csw  The system is underdamped.

3. ke > k3 The arm linkage and force sensor are much stiffer than
the environment.

4.k =0 There is no position gain in the control law, and there
are no actuator dynamics. Open loop force control is
used.

5.w? = —m’“—3 Only the low frequency oscillations will be considered.

A+mB

As was stated earlier, Equations (2.60) and (2.61) must be identical. However, jetting-iw will
remove from the first equation any dependence on the paramet8imilarly, the second equation will not
depend or;. (Terms that do not have dependencecpror c; will remain the same.) Thus, using either
equation exclusively removes information. One way around this problem is to use a solution that includes the
union of terms from the two solutions based on the approximatigneftiw ~ \/ks/(ma + mpg).

Another obstacle to a meaningful approximate solution is the fact that it is not possible to directly measure
the value ofz; (at least with our experimental system). Instead, the force sensor may be used to obtain the
difference betweer 4 andzg:

fm = ksAzg = ko(1 + NAzs = ko(zp —x4). (2.62)

It will prove useful in this development to introduce a relation between the massesndmpg. The
sum of these masses may be written as the multiple of either:

ma+mp = amy and ma +mp = Pmp (2.63)
or .
mp = (a— 1)my and mpg = ﬁm,q (2.64)
and therefore
o=l aa p=_“ (2.65)
- B-1 S a-1 '
Using these relations and the approximationfgields:
map? = _ks and mpp? = _ks (2.66)
@ g

Thus, both Equations (2.60) and (2.61) can be used in Equation (2.62) and the union of the terms from
the two results can be taken. Equation (2.60) yields:

O = ky(zp —xa) (2.67)
_ 'mAp2+cAp+kA_1]$
? cop + ko A

= ko

[map® +cip + kl} .
cop + k2 4

-k [ _%} +C1p+k1 Czp*-f-kg
- 2 Cap + kQ CQP* + kQ

TA
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Alpl? + ek (p +p*) + k3

1 . k k
. [0102|p|2 + ks <k1 - —3> +p <Clk2 —C2 (kl - —3>>] TA
2 a Q

B S T P

X

LT AL | R PR N I (2.68)
koam 4 « ky \ a
Similarly, Equation (2.61) yields:
kscac kac2 k k2 ksc
(2) o | B328 ™% M B2 el 2.69
m { keoama  keama « kgoﬂ} v {l@a 3] oA ( )

Comparing Equations (2.68) and (2.69) it is seen that those terms which do not cantains appear in
both expressions. In particular; terms do not appear in the first result, andterms do not appear in the
second result. This is just as expected. To gain a good first order approximation of the equafigntfisr
necessary to include all terms that appear at least once in both results. This gives:

k . k k ce [k .
fm ~ kga;m (02 (c1 —c3) — cé) — EB <1 + 192—3&> + kl] ra+ [cl —c3+ é <Eg — k1>] za (2.70)

Using the assumptions thiat > k3 andk, = 0, this reduces to:

k

fm S —E3$UA + TaA (2.71)

3
aTstary
2

(For the case of; > ¢, this is a lower bound on the magnitude of thg term, and a first approximation.
As can be seen in Equation (2.70), it will actually be more negative.) The above equation may be written as:

fm=—K'zg—C'ip (2.72)

whereK' andC" are the effective stiffness and damping measured by the sensor.

The relationship off,, to x4 seems reasonable — the measured force is equal to the valuk;of,,
modified only be the parameter

However, the value of”’ seems strange at first glance. Obviously, the introduction of damping to the
system can make the measured force proportional to the velagity,However, it can be seen that this
term can take on negative and positive values. For positive values, it appears at first that the system is not
conservative. But a very simple and intuitive explanation can be provided to show that the system remains a
conservative one.

When the system is oscillating at the low eigenfrequency the masses are moving symmetricatly, with
having a larger amplitude thanz. As m4 moves toward the environmeriy is compressed and a force is
measured. However, the dampersaande, resist the motion ofn 4. Thus, they both diminish the magnitude
of the measured force.

In summary, the introduction of damping to the oscillatory system has caused a change of phase of the
oscillations. This phase change shows up as a velocity term in the approximation for the measured force. In
the next section the effects of this phase change on the system will detailed.

2.7.3 Hysteresis

When damping is added to an oscillating system, energy is lost during the cycle of motion. If the oscillation
is maintained by a driving force, then the energy lost due to damping is replaced every cycle. However, the
addition and subtraction of energy are not in phase. If they were, the damping would be instantaneously
negated, and the system would oscillate as if it were undamped.
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P

force f(x)

—h
o

P
position X

analyzed. Equation (2.72) shows that this may be thought
of as a second order system with an arbitrary mass, and spring and daffipengl K. In this reduced
model, the measured forgg, is equivalent to the sum of the forces experience by the mass:

f=mi=-K'z-C'# (2.73)

(For convenience, the subscripts have been dropped.) For such a system, the quasi-static matiom df

yield a straight line of slope- K’ and amplitude4, as shown in Figure 2.16. (Note, this figure contains an
offset fo = —K'xzy which may be added to both sides of the above equation.) For the dynamic situation in
which the damped system is driven so that there is no loss in amplitude, the force is described by Figure 2.17.
This makes intuitive sense. The value @fis no longer dependent on just but also on the direction of
motion. Motion in the positive direction causes the measured force to be reduced by a negative damping
force. Motion in the negative direction causes the measured force to be increased by a positive damping
force. This phenomenon of the separation of the paths traveled is ¢i#dresisand the connected curve

is called ahysteresis loop

A pertinent questions is: What is the geometric shape of the hysteresis loop? A steady state oscillation
can be described by [59]:

x Asin(wt + ¢) (2.74)

T = Awcos(wt+ @) (2.75)

Thus, the damping force can be obtained:

Fp=—C'i = —C"Aw cos(wt + ¢) = —C" Aw/1 —sin®(wt + ¢) = —C" Awy [1 — (%) (2.76)

(CI,TADwy + (%)2 =1 2.77)

or




CHAPTER 2. THE ARM, SENSOR, AND ENVIRONMENT MODEL 19

P

force f(x)

—h
o

P

Xq - A X Xq T A .
0 0 0 position x

direction of travel about this hysteresis curve it is noted that
when moving from the negative direction, the damping force;C'%, must be positive fo€” > 0. Thus,
for C' > 0, the hysteresis loop is counterclockwise. Ebr< 0, the hysteresis loop is clockwise.

However, this is just the description of the damping force. To get the value of the measured force, the
spring force must be added as in Equation (2.73). This is the equivalent of adding a line to an ellipse. The
addition of a line to an ellipse mathematically yields a rotated ellipse, but the semi-major axis is not parallel
to the line. Since the slope of the line added is important, it is useful to think of the new contogkew a
ellipse. Thus, the addition of the spring force to the damping force yields the measured force as a skew ellipse
with an axis at slope-K’, as shown in Figure 2.17.

A similar analysis may be performed for the hysteresis curv& $§. In this case it is the positional force
which causes a separation of the paths. Therefore, it is necessary to look at the positionalforce,

Fp=-K'zs = -K'Asin(wt + ¢) = —K'A\/1 — cos?(wt + ¢) = —K'A4[1 — <%> (2.78)

<1€fix>2 + (%)2 =1 (2.79)

which, again, is the equation of an ellipse. The direction of travel about this hysteresis loop may be obtained
by considering the situation at the extremes of oscillation when the velocity is zero. When switching from
a positive to negative velocity, the force must be in the negative direction. Thus the direction of travel is
clockwise forK’ > 0.

Again, it is necessary to add an offset to obtain the measured force. From Equation (2.73) it is seen that
the damping force must be added. This again yield&awellipse with an axis at slopeC’, as shown in
Figure 2.18.

Finally, if the system is not driven to maintain a constant amplitude the oscillations will decay. This
causes the continuous elliptical curves to change to elliptical spirals that converge on zero.

or
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P

force f(v)

—h
o

P
velocity v

ko andks:

koks
ko + ks

kmeasured =

(2.80)

According to Approximation 3 of Section 2.7.2, the measured spring constant can be redéges tt0*
N/m.

(Note: Inthis and all subsequent data presented, the parafpeteay be represented by MezFora[2],
the z component of the measured force in the world frame. Similarly, the paramgteray be represented
by MezP[2], thez component of the measured position in world frame.)

Another test was performed to measure the stiffness of the force sensor. To do this, the sensor was
removed from the arm and compressed in a C-clamp. Compression of the sensor was measured with a
micrometer, and the forces were measured by the sensor itself. The data is shown in Figure 2.21. The
measured spring constait, was about x 10% N/m.

Given this initial data, and the model development of the previous sections, it is possible to analyze
the response of the entire system to small oscillations. To obtain the data, the arm was placed against the
environment as shown in Figure 2.19. The arm was given an open-loop command to exert 20N of force
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. am
force sensor

/ probe and weight
aluminum plate
—— p

cardboard box
— table

Figure 2.19 Experimental setup for force oscillation experiments.

against the surface. (Incidentally, the measured open-loop force of 18.6N indicates the need for closed-
loop force control.) Then the environmental surface was struck softly so as to excite only low frequency
oscillations. The measured force, position and velocity of one of these tests is shown as a function of time
in Figure 2.22. While damping is present, the system is obviously underdamped, which matches the earlier
assumptions.

First, the frequency of oscillation is about 90 radians/second. Equation (2.53) and Assumption 5 in
Section 2.7.2 then indicate 4 + mp = 1.2 kg.

Second, the environmental damping parametemay be obtained using Equation (2.59) and (2.41).
Figure 2.23 is a plot of the natural logarithm of the absolute value of the peak oscillations of the measured
force. The slope of the line in this graph gives the value of the decay parametéis slope is -11.3. Thus,
cs =—2(ma+mp)o —c; =17N -s/m.

The above time response of force, position, and velocity, may also be graphed so as to show the hysteresis
curves of the response. Figure 2.24 shows the measured force as a function of displacement. The slope of the
elliptical spiral yieldsk” ~ 10* N/m. Figure 2.25 shows the measured force as a function of velocity. The
slope of this elliptical spiral indicates th&t ~ 66 N - s/m. Figure 2.26 shows that these are valid values
of K" andC’ by comparing the measured force with the force calculated from Equation (2.72). Using these
values of K’ andC" in a comparison of Equations (2.72) and (2.71) should provide estimates of all unknown
dynamic parameters in the fourth order model.

First, it is known thatk” =~ k3/a. Since bothK’ andks; are approximately0* N/m, « =~ 1. However,
Equation (2.64) shows that cannot be exactly unity otz is zero. Therefore, it is assumed that the data
indicates thatn s > mpg. It will be assumed thatr ~ 1.1, or equivalentlym g is less thann 4 by an
order of magnitudemp = 0.1m 4. Therefore, from the previous result using the frequency of oscillation,
my ~ 1.1 kgandmpg =~ 0.1 kg.

Second, it is known that from Equations (2.72) and (2.71) that

k2a ’

o —(C'—cl+¢3) (2.81)

ks
All that is unknown is the ratio of,/k;. However, from Equation (2.35) it is known thiat will be less than
ks. As stated then, the geometric comparison of the lengths of the force sensor and the outer arm indicated
thatk, will be about an order of magnitude less than the force sensor stiffngssidf* N/m. Itis also known
from Assumption 3 in Section 2.7.2 thiat >> k3, and therefore is at least an order of magnitude larger than
the environmental stiffness @f* N/m. Thus 10°N/m < ks < 5 x 10°N/m. Lettingk, ~ 5 x 10%, implies
that(1 + A) = 10, and the above equation yields ~ 4400.

In review, the following parameters values were obtained using the described means and assumptions:
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Figure 2.20 Force versus position data for arm pushing quasi-statically on environment. The slope indicates
ke & 9340 N/m.
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Figure 2.21: Force versus position data for static compression of force sensor with a clamp. The slope
indicatesk; = 5 x 10% N/m.
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Figure 2.22 The measured time response of force, position, and velocity after the system has been excited.

2.00

1.50

0.50

natural log of force f(t), Newtons

0.00

1 )
1.70 1.75 1.80
time, seconds

-0.50 -

-1.00

-1.50

-2.00L

Figure 2.23 The measured damping of the environment. The slope 1.3 is the decay constant of the
environment.
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Figure 2.24 The measured hysteresis curve of force versus position.
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Figure 2.25 The measured hysteresis curve of force versus velocity.
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k1 =0N/m

ks ~ 10* N/m

my +mp = 1.2Kkg

c3 =17N-s/m
K' ~ 104

C' ~ 66

my4 = 1.1kg,mp =0.1kg

ks = 5 x 10° N/m
A= 10

ko ~ 5 x 10° N/m
¢t =10N-s/m

Direct Drive motors have no intrinsic stiffness, and
none was provided actively.

Quasi-static measurement of force versus displacement
assuminges > k3.

Measurement of oscillating frequency, assuming low
frequency underdamped vibration.

Measured directly or from decay envelope.

Measurement of force versus position hysteresis loop
skew.

Measurement of force versus velocity hysteresis loop
skew.

K' ~ ks indicatese — 1. Itis assumed that ~ 1.1
orma/mp = 10.

Direct measurement.
Geometric estimation.
Condition thats < k2 = ks/(1 + A).

Controlled damping.

¢y =4235N -s/m From calculation based on small damping approxima-
tion.

2.7.5 Simulation

To test the parametric values obtained experimentally in the previous section a simulation of the system was
performed. Figure 2.27 shows the time response of the measured force, position, and velocity. This compares
favorably with the real data in Figure 2.22. The frequency of the simulati8d imdians/second, compared

with 90 radians/second for the data.

The simulated force versus velocity hysteresis loop is shown in Figure 2.28. This is compared to the real
data in Figure 2.25. The slope 64 N - s/m is very close to the data value 66 N - s/m. Notice too, that
this graph exhibits a negative skew axis, further justifying the earlier explanation of this phenomenon.

The simulated force versus position hysteresis loop is shown in Figure 2.29. This is compared to the real
data in Figure 2.24. Although the slope of the skew axis is smaller in the simulation by about 30%, this can
be attributed to the model inaccuracies and experimental error. Since the main concern has been with the
order of magnitudes of the spring constants, this is a reasonably good result.

The slope of the force versus position curve is determined mainly by the valkg ofo improve its
slope,ks can be increased by 30% 18000 N/m. Changingk; alters other parameters also. The following
parameter list results:

m, = 1.46kg

my = 0.14kg

kk = 0

kr» = 5x10°N/m

ks = 13000 N/m
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Figure 2.26 The addition of the measured position and velocity, multiplied by the determined constants,
yields a close match to the measured force.
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Figure 2.27 Simulated time response of position, velocity, and force, using the estimated parameter values.
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Figure 2.28 Simulation result of force versus velocity using estimated parameters.
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Figure 2.29 Simulation result of force versus position using estimated parameters.
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¢t = 10N-s/m
¢z = 3651N-s/m
c3 = 26.3N-s/m

The results of using these parameters within the simulation are shown in Figures 2.30 through 2.32. As can
be seen, only the force versus position curve changes significantly, increasing its 938 td/m, which

agrees very closely with the data. This result is consistent with Equation (2.70), the comments following
Equation (2.71), and the parameter estimates of the last section. Unless otherwise indicated, these parameter
values will be used for all subsequent illustrative examples.

2.8 The Resultant Model

The purpose of this analysis has been to obtain reasonable estimates of the system parameters. These values
will be useful to provide a plant model when discussing force control strategies. For these purposes, even
order of magnitude approximations will prove to be acceptable. Discrepancies between quantities like the
value ofk3 in the data and simulations are therefore viewed as unimportant. In fact, the correspondence
between experimentation and simulation indicated that the developed fourth order model is accurate and
useful.

This fourth order model will be used as the plant in the analysis of force control strategies in the subse-
guent chapters. However, for those discussions it will be more useful to use the pole/zero representation of
the plant. For completeness, this representation is introduced here. The locations of poles and zeros for this
plant are shown in Figure 2.33 and all but the left most pole is shown in more detail in Figure 2.34. The
complex pole/zero pairs are due mainly to the environment. The other pole pair is due mainly to the sensor
dynamics. These pole pairs will therefore be called the environment and sensor poles, respectively, in future
discussions. It can be seen that the sensor poles are fairly far removed from the environmental ones, and are
located farther into the left half plane. Usually, the leftmost sensor pole will be ignored.

Finally, it is important to note that the derived model parameters make the fourth order system extremely
different than that presented in reference [13]. In that discussion, based on theoretical analysis only, it was
assumed that the pole zero pairs were to the left of two complex conjugate poles. As has been shown from
experimental data, this is not the case for a very common environment. As will be shown in the following
chapters, this difference in the arm / sensor / environment model results in extremely different conclusions
about the stability properties of the various force control schemes analyzed and implemented.

2.9 Conclusion

In this chapter, a fourth order model of the arm, sensor, environment system has been developed. The devel-
opment included the consideration of each of the components of the model as second order systems capable
of representing the lowest order oscillations of that component. While the outer arm dynamics were briefly
included in the development, it was shown that they could be merged with the sensor dynamics to yield a
fourth order model of the entire system. Analysis of this model without damping was used to derive an ap-
proximate solution for the damped case. Many assumptions, based on the reality of the experimental system,
helped reduce the solution to just a few dominant terms. Comparing these terms with experimental data of
the system undergoing small oscillations yielded approximated values for all of the parameters in the model.
To justify the obtained values, and thereby the approximations used, a simulation of the fourth order model
was performed. The results compare favorably with the experimental data.

Having developed this fourth order model, and demonstrated its viability, it is again necessary to consider
the control question. A discussion of explicit force control and impedance control of this plant will begin in
the next chapter.
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Figure 2.30 Simulated time response of position, velocity, and force using modified parameter values.
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Figure 2.31 Simulation result of force versus velocity using the modified parameters.
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Figure 2.33 The poles and zeros of the fourth order system.
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Figure 2.34 An enlargement of Figure 2.33 showing all but the leftmost pole of the original plot.



Chapter 3

Discussion and Analysis of Explicit
Force Control Schemes

3.1 Introduction

Having developed the model of the arm / sensor / environment, it becomes the plant for a force controller
which must be designed to stably maintain forces inside this system. As discussed earlier, two main ap-
proaches have been proposed for this purpesplicit force controandimpedance controHowever, it has

also been pointed out conceptually in Chapter 1 that every impedance controller contains an explicit force
controller. Therefore, this chapter will discuss explicit force control. Using the plant model developed, each
of the specific controllers discussed will be analyzed for stability. Where possible, this analysis will be com-
pared with the reported results of other researchers. Later, Chapter 6 will present an experimental analysis as
well.

As discussed in Chapter 1, explicit force control involves the direct command and measurement of force
values. The goal of this type of control is to have the output follow the input as closely as possible. Two
types of explicit force control have been proposed: force-based, and inner position loop based. By far the
most commonly discussed, the force-based techniques usually involve the use of some form of PID control,
as well as various simple forms of filtering. Inner position loop controllers, as the name suggests, have an
outer force control loop that provides position command to an inner position-based controller.

While many of these controllers have been analyzed before, this has not been done with an experimentally
determined plant transfer function. As will be seen, erroneous conclusions about the stability of the system
can result without a specific system model. Further, the analysis in this chapter draws the force and position-
based strategies together, into one coherent framework, for the first time. This framework provides greater
understanding of how gain variations affect stability, and suggests a new lowpass filter control technique.

The chapter is organized as follows. First, force-based explicit force control techniques will be presented
and analyzed. Second, position-based explicit force control strategies will similarly be presented and ana-
lyzed. Finally, it will be shown how the two are the same, indicating which particular schemes will be most
successful.

3.2 Force-Based Explicit Force Control

Force based explicit force control describes a force controller that compares the reference and measured force
signals, processes them, and provides an actuation signal directly to the plant. The reference force may also
be fedforward and added to the signal going to the plant.

Some previous researchers have also employed an active damping signal which effectively changes the
plant, by introducing a nonzerq into the plant transfer function, as seen in Equation (2.32). This damping
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Figure 3.1: Block diagram of a generic force-based, explicit force controller.

term moves the environmental poles closer to the real axis but does not generally change the plant structure.
This is because the environmentis generally very stiff, and active damping is usually not large enough to move
these poles to the real axis and make the system nonoscillatory. To be consistent with the model presented in
Chapter 2, active damping witli,, = 10 will be used unless otherwise indicated.

Therefore, the general control diagram is shown in Figure 3.1, wiideethe plant,H is the controller,
andR is the feedforward transfer function, afidis a force feedback filter. The plaGt may be represented
by the fourth order model of Equation (2.32) or the reduced second order model given by Equation (2.18).
Active damping, if present, is included @. The controller H is usually some subset of PID control (i.e. P,
I, PD, etc.). The specific forms of these controllers will be discused next. In the sequel, these schemes will
be analyzed and the analytical results will be compared with previous results obtained by other researchers.
Experimental results with the DD Arm Il will be presented in the Chapter 6.

3.2.1 Strategies for Force-Based Explicit Force Control

This section presents the force-based explicit force control strategies that have been considered for this re-
search. Appendix A presents an overview of strategies that have been considered by other researchers. The
strategies presented here are either a generalization of those, or selected to be the most promising for the
reasons given. In all cases, the joint torques commanded by these schemes are obtained through the transpose
of the Jacobian, and gravity compensation is employed.

Proportional Control  The chosen form of proportional gain force control is:

f = fc + Kfp(fc_fm) - K2, (31)

The feedforward term is necessary to provide a bias force when the force error is zero — without it the system
is guaranteed to have a steady state force error.

Integral Control  The chosen form of integral control is extremely simple:
£ = K5 [ e bt =~ Ko (3.2)
Proportional—Integral Control  The form of Pl control considered for this discussion is:

fzKMﬂ—h»+K@ﬂﬂ—nmu—Kmm (3.3)

No force is fed forward since the integral term can provide the needed bias force.
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Proportional-Derivative Control  The most basic form of PD control considered is:

f = fot Ko ) + Kpse(fe = fn) = Kuin (3.4)

As with proportional control, the feedforward term is necessary to provide a bias force at steady state.

Proportional-Derivative Control Often, the force signal is very noisy and must be filtered before a
derivative may be taken. Therefore, a simple dominant pole filter may be employed in the feedback path
(L = a/(s + a)). The resultant control law in the Laplace domain is:

F(s) = F.(s) + [Kpp + Kps]

a
fc_ <s+a> fm:| - KUSXm (35)

3.2.2 Analysis of Force-Based Explicit Force Control

Given the wide spectrum of approaches and results reported in the literature, it is worthwhile to take a second
look at these control strategies. Each will be analyzed below using the plant model previously developed.

Proportional Control

For proportional control = Ky,, andL = 1 in Figure 3.1. While the value of the feedforward tefin
does not affect the characteristic equation, a value different than unity will not cancel the reaction force from
the environment, and the controller will not converge to the desired value. The feedforward term will be
discussed further below. The closed loop transfer function with the feedforward termis:

i: (1+Kfp)G (3.6)

F,, 1+ Kpr
This is a Type 0 System and will have a nonzero steady-state error for a step input. The root locus of this
system is shown in Figures 3.2 and 3.3. The corresponding Bode plots are shown in Figure 3.4.

As can be seen from the root locus, both the sensor poles and the environment poles move away from
the real axis for increased proportional gain. Thus the system becomes more oscillatory. However, the
environmental poles go to a pair of zeros, while the sensor poles go to infinity. Thus, the system remains
stable, but oscillations are likely to occur near the natural frequency of the environment. Further, note that the
poles can move into the right half plane, making the proportional gain controller unstable. This is contrary
to the predictions of other researchers, and results from the use of a plant model that was not experimentally
derived [14].

The Bode plots further illustrate this problem. There is a resonance peak from the environment dynamics,
which corresponds to the normal mode discussed in the last chapter. After this peak there is a 40 dB/decade
drop-off which gives a minimum phase margin-ofl5° at Ky, ~ 1.

The addition of a feedback lowpass filtdr,= s%ﬂ can reduce the magnitude of the resonance peaks.
The corresponding closed loop transfer function becomes:

Fno 1+ Kp(-2)G

s+a

3.7)

The root locus is modified by the presence of a pole on the real axis that moves le#t froru. Depending
on the magnitude of, this pole can reduce the response of the resonance peak.-Foso this becomes a
pure proportional controller. Far — 0 this scheme is very similar to integral control, discussed below. (For
this reason, filtered proportional control will not be implemented later in Chapter 6.) Improved response with
lowpass filtering has been reported [1].

It will prove useful later (in a discussion of Impedance Control) to now discuss the feedforward term in
more detail. As stated above, it is desirable that the feedforward term be iinityl() in order to cancel the
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Figure 3.2 Root locus for the fourth order model under proportional gain explicit force control.
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Figure 3.3 Enlargement of root locus in Figure 3.2 wifti, values of 0 to 1.5 in steps of 0.1 .
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Figure 3.4 The resonance peak occurs near the natural frequency of the environment. The gain margin is
1.2 atw = 118rad/s, which corresponds to the root locus crossing to the right half plane in Figure 3.3.
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Figure 3.5 Block diagram a force-based explicit force controller with proportional gain and unity feedfor-
ward. The plantZ has be expanded into its components, and the sensor dynamics have been ignored.
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Figure 3.6: Block diagram a force-based explicit force controller with proportional gain and extra feedback
for reaction force compensation. The plahhas be expanded into its components, and the sensor dynamics
have been ignored.

environmental reaction force during steady state. Also, it will be assumed that no feedback filtering is being
employed { = 0). Further, the plant will be expanded into its arm and environmental components, but the
sensor dynamics will be ignored. This yields a block diagram for the system as in Figure 3.5. The transfer
function of this system is:

Fn _  (H+1)G

F.  1+(H+1)G (3:8)
HG
= 1r@0G (3.9)

whereH' = H + 1. Itis seen directly that an equivalent block diagram of the system may be constructed as
in Figure 3.6. Viewed in this way, the reaction force is negated explicitly, and the proportional gain may have
valuesH' = K'y, > 0or H = Kz, > —1. Thus, the proportional gain of the original controller may be as
small as negative one. The use of negative gains like this have appeared in the literature previously [19, 23].
However, this result is usually presented within the framework of impedance control. As will be seen in the
next chapter, the impedance controllers for which this result as obtained actually contain proportional gain
explicit force control, which mandates the result.

Integral Control
Ky

s

For integral controlH =
transfer function:

andL = 1in Figure 3.1. A nonzero feedforward term yields the following

F._(R+%5)@
F,, N 1+ ﬁG
8§
Letting R be unity places a closed loop zerosat= —K 5 which limits the effectiveness of the integrator

pole. Also, a feedforward signal is not necessary since the integrator will eliminate any steady state error for
a constant input. Therefor&, is set to zero and the transfer function is:

(3.10)

F, g
Fm_1+%G

(3.11)
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Figure 3.7: Root locus for the fourth order model under integral gain explicit force control.

This is a Type 1 System and has a finite error to a ramp input. The root locus of this system is shown in
Figures 3.7 and 3.8. The corresponding Bode plots are shown in Figure 3.9.

As can be seen in the root locus plot, the introduction of the integral pole moving to the left causes the
environmental and sensor poles to move right. The environmental poles can actually move into the right half
plane before completing their semicircular trajectory to a pair of zeros. This has been previously viewed as
destabilizing [14]. In the previous section, the sensor poles caused this same behavior from a proportional
controller. The two root loci are compared in Figure 3.10. As can be seen, the loci are similar except that the
integral controller has the benefit of a dominant low pass pole on the real axis. The Bode plots indicate that
the low pass nature of integral control hides the resonance spikes well below unity magnitude. The point of
zero phase margin indicates a maximum integral gaiff gf~ 10.

Proportional—Integral Control

A Pl controller is a linear combination of the above two schemes. In this ¢hse K 5, + st L=1,and
for reasons mentioned abouve,= 0. Therefore, the transfer function is:

F. B (Kfp—i-%&)G

Fn _1+(K,«p+%)G

(3.12)

Obviously, the behavior is a combination of the behaviors of pure proportional and pure integral control.
The appearance of the root locus and Bode plots will depend on the gain which is varied.
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Figure 3.8 Enlargement of root locus in Figure 3.7 witt; values of O to 30 in steps of 1.

Proportional-Derivative Control

A PD controller includes a derivative term with the proportional control discussed above. In thigtcase,
Ky, + 5Ky, L =1, and for reasons mentioned abo¥e= 1. Therefore the transfer function is:

F.  (R+ K+ Kus)G
F,, - 1+(Kfp+deS)G

(3.13)

Choosing a specific value @f 5, with Kz = 0 will determine the starting place of the root locusiof;.
This starting place will be somewhere on the root locu&@f in Figure 3.2. Independent of the starting point
the root locus will have similar characteristics. Hof, large, the derivative term will have no influence, so
the controller and its root locus can be approximated as those for proportional control aloiig,, Foi0 this
scheme will reduce to pure derivative control which will not follow the reference force. However, the transfer
function and associated root locus g, = 0 represent the extreme of the behavior for a PD controller. Just
as the behavior of PI control was intuited from that of P and | control alone, the behavior of PD control can
be best understood by studying its extremes of pure proportional and pure derivative control Khiss,
considered zero in the following discussion. The resulting root locus is shown in Figure 3.11 and 3.12 The
corresponding Bode plots are shown in Figure 3.13.

As can be seen in the root locus plot, for a certain range of gains, derivative control moves all of the poles
further left, thus appearing to make the system more stable. For this reason, PD control has been predicted to
be very stable [14].

However, the Bode plots of the system shows a major problem with this approach. Derivative control
acts as a band pass filter, passing the resonant frequency. This surely will drive an underdamped system into
oscillation.

Another implementational factor must be considered with respect to derivative control. Typically, the
feedback signal from a force sensor is very noisy. One example can be seen in Figure 6.4. Taking the
derivative of such a signal is not advisable. However, filtering may be effective. Passive filtering may be



CHAPTER 3. DISCUSSION AND ANALYSIS OF EXPLICIT FORCE CONTROL SCHEMES 40

101 T T TTTTI T T TTITI I T T TTITI T T TTITI T T TTTTT

100 L .

T

101
102 .
10-3 i

magnitude

104+ .
105 |

T

10-6 - .

10_7 [ | [ L Ll |
10-1 100 101 102 103 104

frequency(rad/s)

_50 I T T TTTTI T T TTTTI I T T TTTTII T T TTITI T T TTTTT

-100 -

-150

T

phase

-200

-250 -

_300 I L Ll [ L L Ll | |
101 100 101 102 103 104

frequency(rad/s)

Figure 3.9: The resonance peak corresponds to the natural frequency of the environment, but remains under
a magnitude of one for gains ef 10. The phase margin remains né&érdeg as well. The gain margin is 28
atw = 85rad/s, which corresponds to the root locus crossing to the right half plane in Figure 3.8.
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Figure 3.11 Root locus for the fourth order model under derivative gain explicit force control.
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Figure 3.12 Enlargement of root locus in Figure 3.11 witty; values of 0 to 0.02 in steps of 0.001 .

accomplished by the use of a compliant sensor or sensor cover. As mentioned earlier, this method can
introduce uncontrolled degrees of freedom to the system, or reduce the effective force that may be applied.
Alternatively, active filtering may be used. This will be discussed next.

Filtered Proportional-Derivative Control

To filter the force signal a dominant pole filter may be used, placing the transfer furIctienS%a in the
feedback path. Therefore the transfer function becomes:

& _ (R+Kfp+deS)G (3.14)
Fn 14 (K + Kpus) (7)) G

As before,K 4, is chosen to be zero for this analysis. Choosing> oo will not make an effective filter of
the high frequency noise. Choosing— 0 will make this a proportional gain controller. Thus, the extreme
case of lowpass filtering changes this to a proportional gain controller. Proportional gain control has already
been shown to ineffectively mask the resonance oscillation of the system.

For the case of nonzetli 3, anda — 0, the characteristic equation becomes that of a Pl controller. As
discussed before, the responses of this controller will be between that of P and | control alone.

3.2.3 Discussion of Explicit Force Control

It seems apparent from the above analysis that explicit force control with the experimentally determined plant
is best accomplished by integral control. First, the integral controller is a Type 1 System and will have zero
steady-state error for a constant reference force. Second, an integral control acts as a low pass filter, reducing
the chance of resonance oscillations occurring in the system. This is deemed to be very important. Higher
order modes of oscillation can cause the assumed model to become invalid and actually make the system
nonlinear, especially if separation from the environment occurs.
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Figure 3.13 The resonance peak corresponds to the natural frequency of the environment. Thus, this con-
troller acts as a band pass filter for the resonant frequency of the system.
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Figure 3.14 Block diagram of a generic position-based, explicit force controller.

One of the main arguments against integral control is that it does not permit fast force trajectory track-
ing. However, this goal is simply not achievable for a manipulator that is not mechanically attached to the
environment. A simple argument should demonstrate this point. Consider a manipulator that is pressing on a
surface with a natural frequency of oscillation. Between the manipulator and the surface there is no physical
compliance. Consider also that the manipulator is to reduce its applied force. If the rate of the reduction is
greater than the natural frequency of the environment then contact will be lost. In other words, the arm will
pull away faster than the environment can respond. Lost contact can cause instability to develop and should
be avoided. Therefore, it can be simply put tit¥aé force control response time is limited by the environ-
mental dynamicsThis is seen directly in the integral control root locus and Bode plots above, Figures 3.8
and 3.9. The limiting value ok y; obtained from the phase margin in the Bode plots, places the integral pole
just to the right of the environmental poles.

3.3 Position-Based Explicit Force Control

A second class of explicit force controllers consists of those based on an inner position loop. These controllers
were probably implemented first for practical reasons — most commercial manipulators have built in position
controllers and don't allow direct access to actuator torques. As shown in Figure 3.14, the outer force loop
provides a reference position to the inner position loop. In this diaghéns the position controller which
is typically a PD controller:

W =K,+ Kys (3.15)

The commanded force is transformed into a commanded position through an admittance, which is described
as the inverse of a second order impedance:

I:mfs2—|—cfs—|—kf (3.16)

Again the joint torques are obtained through the transpose of the Jacobian, and gravity compensation is
employed. The plant damping, in the system plan®, is again provided actively by the velocity gai, .

Appendix A presents an review of position-based force control implementations that have been performed
by other researchers.

3.3.1 Analysis of Position-Based Explicit Force Control
Ensuring a Type 1 System

As has been stated previously, a Type 1 System is desirable because it has zero steady-state error to a constant
input. Previous analysis of the position-based controllers, especially that of DeSchutter, indicates the need to
consider three controllers that must become Type 1 Systems [11]. These are: position and velocity feedback,
position feedback only, and no inner loop feedback. The previous work, coupled with the plant model devel-
oped in this thesis, indicates a new and novel way in which to view inner position loop-based explicit force
control. As will be seen, the previously reviewed force-based explicit force controllers are actually a subset

of this strategy.
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Figure 3.15 Reformulation of the block diagram of generic position-based, explicit force controller.

Consider first the position-based force controller that uses velocity as well as position feedbagk (

K, + K,s). Deschutter’s results indicated that the outer force controller providing commanded positions
must have at least one free integration. To achieve this the force controller mlist s¢m s + cy). This

is essentially a second order low pass filter. Contrary to this is the first order low pass filter which will have a
nonzero steady state error [25].

Next, consider the position-based force controller that uses only velocity feedibaek K, s). For this
scheme, the outer force loop must provide a reference velocity, as well as satisfy the criterion of at least
one free integration. This implies = m¢s. Notice that this scheme is exactly what has previously been
considered as explicit force control with active damping. Viewed in this way, the velocity feedback is not just
added to improve damping. Instead, it is part of a inner loop, position-based, feedback controller.

Finally, the third case of no inner loopi{ = 0) reduces to the second case since the transfer function of
the arm, sensor and environment does not change form when the active damping is removed. This is because
velocity feedback is still present in the system even though it is not from active feedback.

Position-Based Explicit Force Control Viewed as Force-Based Explicit Force Control

Having shown the correspondence between position-based and force-based explicit force control, it is pos-
sible to change the first into the second. Consider separating the position controller in Figure 3.14 into two
parts,W; andW,. Figure 3.15 shows the resultant controller block diagram.

It can now be seen that the inner loop is identical to Figure 2.7, the model of an arm with damping and
stiffness for the case of no environmental interaction. With the environment included, its mass, damping,
and stiffness parameters simply add to those of the arm. The result is still essentially the samé’, Tibus,
equivalent tak; in the fourthorder model of the plant. From, Equation (2.18) it can be seen that the addition
of more stiffness to the characteristic equatibn & k. + k1), will make the poles more oscillatory. Thus,
the innerloop position controller makes the plant more stiff and oscillatory. The resultant outer loop force
controller, however, can still assume any of the forms of force-based control previously discussed. This is
shown below. It is therefore concluded thaisition-based force control differs only from force-based force
control by the addition of stiffness to the plant. Further, this additional stiffness is destabilizing.

The outer loop of the position-based force control can be shown to assume the form of any of the force-
based explicit force controller previously discussed. Consider the form of the controller shown in Figure 3.15.
It is also apparent that the controller now has a form previously associated with force-based explicit force

control, where
g W Kt K
I mygs? +cps+ ky

(3.17)

Notice that all of the explicit force controllers can be constructed from this transfer function:
Proportional Control 1 Kp=Kplky Ky,=my=c;=0
Proportional Control 2 Kp=Ky/cy Kp=my=k;=0

Integral Control 1 Kp=K,/c; Ky=my=k;=0
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Figure 3.16 Root locus for the fourth order model under explicit force control with a second order lowpass
filter.

Integral Control 2 Kp=K,/my Kp=cy=k;=0

Derivative Control Ky=Ky/ky Ky=my=c¢;=0

PI Control Kp=Ky/cg,Kp=Kp/cy my=kf=0

PD Control Kp=Kplks,Kiqq=Ky/ky my=cy=0

Filtered P Control Kp/(s+a)=Kp/(cpgs+kf) Ky=mp=0

Filtered PD Control (Kp+Kps)/(s+a) = (Kp+Kys)/(cys+kg) myp=0
27d Order Low Pass Filter Kp/(s(s+a)) = Kp/(s(mgs+c¢f) Ky, =kf=0

The only new controller in this list is the second order lowpass filter. It will be discussed in the next
section.

Root Locus and Bode Plots

Finally, it is worthwhile to look at the root locus and Bode plots for a what has been called a position-based
explicit force controller. As has been discussed above, the only controller from that is newly introduced by
this concept is the second order low pass filter. Like the first order dominant pole introduced by low pass
filtering or integral control, the two poles introduced by a second order filter should be placed to the right of
the environment poles. Since the controller has been chosen to be Type 1, one of the poles is constrained to
begin its locus at the origin. Thus the other should begin to the left of the environmental poles. As the gain is
increased, the filter poles on the real axis will come together and give a double pole filter. Ideally, this double
pole should be just to the right of the environmental poles. A root locus for20 is shown in Figures 3.16

and 3.17. The corresponding Bode plots are shown in Figure 3.18.
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Figure 3.17. Enlargement of root locus in Figure 3.16 wilty; values of 0 to 2000 in steps of 10. The poles
move very slowly once off the real axis.

3.4 Conclusions

This chapter has presented a stability analysis of various explicit force control routines using the plant model
developed in Chapter 2. This work is unique in its broad coverage of control strategies and use of an exper-
imentally determined plant model. The results also contradict the predictions of other researchers [14], but
are confirmed by experimental implementation (as will be shown in Chapter 6).

This analysis has indicated that integral control is the best choice for explicit force control. This is because
of its simple form, lowpass nature, and its zero steady state error for a constant reference force. A possible
second choice is the second order lowpass filter. Although, slightly more complicated than simple integral
control it promises to filter the force oscillations better with two real axis poles. Proportional control is the
third choice. However, with this controller the dominant poles are complex, indicating that oscillations will
occur for even low gains. Further, the analysis shows that proportional gain control becomes unstable, which
has not previously been predicted. Finally, any control using the derivative of the force signal does not seem
promising. This type of controller will act as a band pass filter at the natural frequency of the system. Also,
obtaining a good derivative of the force signal may prove difficult.

The behavior of the proportional gain force controller should be kept in mind. As will be seen in the next
chapter, the most common forms of impedance control contain proportional gain explicit force control within
them. This will prove interesting, since it has been shown in this chapter that proportional control of force is
not best.
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Figure 3.18 Note that the resonance peak is almost completely suppressed. The gain margin is 1854 at
w = 48, which corresponds to the root locus crossing to the right half plane in Figure 3.17.



Chapter 4

Discussion and Analysis of Impedance
Control Schemes

4.1 Introduction

As discussed earlier, Impedance Control is a strategy that controls the dynamic relation between the manip-
ulator and the environment. The force exerted on the environment by the manipulator is dependent on its
position and its impedance. Usually this relation is expressed in Cartesian space as:

f=Z(). 4.1)

The impedance consist of two components, that which is physically intrinsic to the manipulator, and that
which is given to the manipulator by active control. It is the goal of Impedance Control to mask the intrinsic
properties of the arm and replace them with the target impedance.

In general, the impedance can have any functional form. As will be seen in Chapter 7 such general
impedances are useful for obstacle avoidance. However, it will be made clear in this chapter that sensor
based, feedback controlled interaction with the environmentrequires the impedance to be linear and of second
order at most. This is for two reasons. First, the dynamics of a second order system are well understood and
familiar. Second, for higher order systems it is difficult to obtain measurements corresponding to the higher
order state variables.

To implement Impedance Control, model based control can be used. This type of scheme relies on the
inverse of the Jacobian. A second type of controller which uses the transpose of the Jacobian is sometimes
employed. However, it will be shown that this type of controller is really a reduced version of the first, and
ignores all non-linearities of the system.

More important to this thesis, both forms of Impedance Control will be shown to contain proportional
gain explicit force control (with feedforward). Also, for stiff environments the position feedback is essentially
constant, and impedance control reduces directly to proportional gain force control. The role of proportional
gain force control in impedance control, and their equivalence when in contact with stiff environments, has
not been recognized or demonstrated previously.

This chapter is organized as follows. First, the order of the desired impedance will be discussed and
the implications for implementation will be shown. Second, the Jacobian transpose and the Jacobian inverse
implementation strategies will be presented and discussed. Then, much of the previous research in Impedance
Control will be discussed. It will be shown how each strategy fits into the Impedance Control framework.
Also, it will be shown how each scheme contains explicit force control. In this way and with knowledge from
the previous chapter, it will be possible to make comments on the efficacy of each strategy.

49
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4.2 Zeroth, First, and Second Order Impedance
A linear impedance relation may be represented in the Laplace domain as:
F=17Z(s)X. (4.2)

The order of the polynomiak (s) is the order of the impedance.
The simplest form of an impedance controller has a zeroth order impedance. In this issaeonstant
and
F=KX. (4.3)

The impedance parametaris the desired stiffness of the manipulator. When a manipulator has no intrinsic
stiffness, K dictates the apparent stiffness of the arm. This is accomplished with active control that uses
position feedback. The value of the active stiffness is the position feedback gain.

A more typical form of an impedance controller is a first order impedance. In this case:

F=(Cs+K)X. (4.4)

The added parametér is the desired damping of the manipulator. It is equal to the sum of the active and
natural damping. The active damping is accomplished by velocity feedback in a position controlled system.
The value of the active damping is the velocity feedback gain. Since the active damping can be m@dified,
can take on any value which maintains stability. In fact, negative active damping can be used to eliminate the
appearance of any damping in the arm. This is rarely desirable, since damping has a stablizing effect.

The last form of Impedance Control that shall be considered here is a second order type. The second
order impedance controller has the form:

F=(Ms*+Cs+K)X. (4.5)

The new parametel/ is the desired inertia of the manipulator. While the arm has an intrinsic inertia due to

its mass, this can be modified by active feedback. It follows from the previous two cases that acceleration
feedback can be used for this purpose. In this case, the value of active inertia is the acceleration feedback gain.
Its value can be used to adjukf. Few researchers have proposed such acceleration feedback schemes for
Impedance Control [18]. This is because an acceleration measurement typically requires a second derivative,
which will be extremely noisy. Instead, force feedback is used, as will be shown.

4.3 Model Based Control

Model based control involves the use of a dynamic model of the manipulator to determine the actuation
torques [6]. As will be seen, a Cartesian space position control law which includes the dynamic model of the
arm must utilize the inverse of the Jacobian.

Consider the mathematical representation of the physical arm and its modelled counterpart:

Physical : 74 = Dp(0)8 + hp(8,0) + gp() —Tp (4.6)
Modelled : 74 = Dps(8)u + hps(8,6) + gar(8) — Tos (4.7

wherer, are the actuator torqueb), is the manipulator inertid; are the Coriolis and centripetal torques,

is the gravitational torqud, are the reaction torques from environmental interactions,waisdthe control

signal. The idea of model based control is to compute the actuator torques according to the model (the latter
equation), and apply them to the arm (the former equation). Thus, this control strategy is often know as
computed torqueT he resultant acceleration of the arm is:

§ = Dp'[Dyu+ (hay —he)+ (9m — gp) — (Casr — Tp)] (4.8)
~ow (4.9)
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The approximation is valid for any reasonably good model of the manipulator. It has been shown that knowl-
edge of the manipulator inertias to within 10% is sufficient [32].

The very important result of computed torque is that it provides a way to compensate for all of the
non-linearities of the manipulator dynamics. Thus, a linear control sighaljll provide the desired joint
accelerations in the manipulator. The problem them becomes one of chagsivitich is essentially the
desired joint accelerations.

For a Cartesian space position controller, the desired joint acceleration must be obtained from the desired
Cartesian acceleration. First, it is known that:

i=RJO=JO (4.10)

whereR is a rotation matrix from the end effector frame to the world frame, ands the manipulator
Jacobian. Taking the derivative of this equation and solving for the angular acceleration gives the control
signal:

w=10=J! (sg'—jé) (4.11)

where.J is the manipulator Jacobian. Thus it is still necessary to define the desired Cartesian acceleration.
This is accomplished by specifying the desired behavior of the manipulator to be a second order impedance:

Mi— CAs — KAz = f. (4.12)

The impedance parameterd,, C', and K’ may be chosen. The variahleand its derivatives are obtained
from the transformation of the corresponding angular values:

Ax = z.—xp = z.—F(On) (4.13)
Ai = do—dm = do— JOm (4.14)

whereF represents the forward kinematics, andndm denote the commanded and measured quantities.
For a physical system represented by Equation (4.12), the commanded values act as offsets to the variable
(measured) quantities.

Finally, the force,f, corresponds to the physical force exerted on the manipuldigr= I' . Thus,

f = freaction = _fapplied o _.fmeasured = _.fm- (415)

This value of the measured force may then be substituted into Equation (4.12) for the desired behavior and
Equation (4.7) for the arm model.
Summarizing,

T4 = Du+h+g+J" fn (4.16)

u = J! (xu - jém) (4.17)
i, = M '[(CAi+ KAz)— fn] (4.18)
Az = z.—L(6,) (4.19)
Ai = G.— JOy (4.20)

The next two sections will illustrate the use of these equations. The first section shows the use of the full
dynamics implementation, while the second section shows the use of a steady state simplification.

4.4 Control with Full Dynamics

This section illustrates the control schemes that have utilized the model based control described in the previ-
ous section.
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4.4.1 Computed Torque

Computed Torque was the first scheme to use Equation (4.16) to calculate and compensated for the nonlinear
dynamics of a manipulator [44]. However, the trajectory is still expressed in joint space as:

u = éc + Kw(éc _ém) + K9(06 _am) (421)

It has been shown that the fastest method of calculating the Computed Torque is by using Newton-Euler
recursion [32].

4.4.2 Resolved Acceleration Control

Resolved Acceleration Control was the first scheme to use Equation (4.17) to resolve the desired Cartesian
acceleration into joint space, for use in the Computed Torque scheme [40]. The Cartesian acceleration was
specified as:

U = G + Ky(e —im) + Kp(@e — ) (4.22)
It can be seen that this equation corresponds to Equation (4.18) where
K, = M'C (4.23)
K, = MK (4.24)
i. = —M 'fn, (4.25)

This last equation seems strange at first, since Resolved Acceleration Control does not interact with the
environment f,, = 0). However, the feedforward acceleration can be thought of as the resultzofificial

force This force is exerted by the environment only in computer model of the world, and is calculated
from the gradient of a modellealtificial potentiafield. One excellent use of artificial forces is for obstacle
avoidance strategies in which objects to be avoided are surrounded by repulsive potentials. This concept will
be discussed at length in Chapter 7.

4.4.3 Operational Space Control

Operational Space Control was the first formulation to resolve the dynamic equations into Cartesian space [29].
This scheme is essentially equivalent to Resolved Acceleration Control [34]. It appears very different, how-
ever, because the dynamic equations are expressed in Cartesigerationaspace. The transformation of
Equation (4.16) can be readily accomplished by using the relation:

r=J'F (4.26)
Thus, from Equations (4.16) and (4.18) with, = 0:
Fy= () = (J7) Dot (- d6) + (07) TR+ (UT) Ny
= () 'pJ N+ (JT) " (h=DINE) + () g
= A@)E + p(z,z) + p(x). (4.27)

wherep(z) is the gravity compensation term apds the corrected Coriolis and centripetal forces. Also, the
relation

D(#) = J'A(z)J (4.28)
expresses how the manipulator inertia is related to its Cartesian space counterpart, which is the expression of
the inertia at the end effector of the arm. The above equation for the arm dynamics may be further modified
by pre-multiplying by the transpose of the Jacobian:

= J'F = J'A(x)F + b(8,0) + g (4.29)
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where } -
b=h—-DJ'J0 (4.30)

The above two equations represent the heart of the operational space representation.
The value ofi is obtained from the equivalent of Equation (4.18) with= 1. Since it only appears as
a ratio with the arbitrary constan€s and K, any value other than unity provides equivalent results. Also in
Equations (4.16) and (4.18)f,,, = 0 since this scheme does not consider environmental interaction. Unlike
Resolved Acceleration Control, no artificial force is employed to provide a feedforward acceleration term,
Z.. Thus,
.= (CAz + KAx). (4.31)

The absence of a feedforward term is one of the small ways in which this scheme differs from Resolved
Acceleration Control. Another possible difference is that the Operational Space formulation was expanded
to include the case of redundant manipulators. However, the same methodology can be used for Resolved
Acceleration Control since the modifications are only with respect to the calculatitn ofhich becomes
more general than Equation (4.18). In fact, it has been pointed out that Resolved Acceleration and Operational
Space Control are essentially equivalent, and they also are part of the larger category of Geometric Control
Theory [34].

Finally, it should be pointed out that the Operational Space formulation is mostly valuable as a conceptual
tool. For implementational purposes, the arm dynamics are best calculated with the Resolved Acceleration
formulation, which is expressed in joint space and utilizes the speed of the Computed Torque technique
directly.

4.4.4 Second Order Impedance Control

Unlike the above two schemes, this scheme utilizes force feedback in its use of Equation (4.18). This should
mean little difference in the expression of the control, but again it looks very different. First, Equations (4.17),
(4.18) in (4.16) yield:

T =DJ "MV (CAi+ KAz —fp) — J IO+ h+ g + J fn. (4.32)
Equation (4.28) then gives:
= JIAM ' (CAi + KAz — fr,) — JYAJO + b+ g + J* frn. (4.33)

Next, this controller employs the mobility tens@dr which is the inverse of the Cartesian representation of

the manipulator mass:
W=A" (4.34)

Using this relation in the above equation gives:

o= J'WIM N CAi+ KAz — f,) — JTWTI0 + b+ g + TV (4.35)
= J'WM N (CAs+ KAz h — JPW LI + TP (1-W MY i + g (4.36)

Adding confusion to this equation is the inclusion of the following identity:
h = {JT(JT)_lDJ’lJD’l] h=JTW-LJD'h (4.37)
This changes the above equation to:
7= JIWIM Y (CAG + KAz) + JTW L (JD*lh— je’) + JT (L= WM Y £ + g (4.38)

This is the expression of Impedance Control in the above references.
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Second order impedance control differs from the schemes previously presented, because it uses force
feedback. First, this feedback is used in the physical model of the arm dynamics, Equation (4.16). This
is equivalent to introducing end effector forces into the Newton-Euler dynamics calculations. Second, the
feedback is used in the impedance relation, Equation (4.18). While Equation (4.16) effectively linearizes the
arm, Equation (4.18) modifies the Impedance Control signal to compensate for the experienced force.

It can now be seen that it is the force feedback in the control signal which modifies the apparent inertia
of the arm [23]. Equation (4.33) best shows this effect. In this controller, as with the previous ones, the
premultiplication of K andC by AM —! changes nothing. However, this is not true for the force feedback
signal f,,,. The termAM —! is a mass ratio that reduces or increases the amount of actuator torque applied.
For simplicity sake, it will be assumed that the impedance parameters are diagonal in the Cartesian space
defined by the eigenvectors af In this caseAM ~! (or its diagonalized counterpart) can be thought of as a
matrix of mass ratios along the diagonal. Siticis due to the physical inertia of the arm, it is the impedance
parametef)/ which determines each ratio. F&f — 0 the ratio becomes very large; for a small measured
force, a large accelerating torque is applied to the arm. Thus, the apparent inertia of the arm is reduced. (ltis
important to remember that the external force does not cause the acceleration because it has been effectively
negated by thg” f,, term.) Similarly, forM — oo the ratio becomes very small; for a large measured force,

a small accelerating torque is applied to the arm. Thus, the apparent inertia of the arm is increased. In this
way, second order impedance control not only changes the stiffness and damping properties of the arm, but
its inertia as well.

4.5 Control with a Steady State Approximation

This section discusses some control schemes that have used a steady state approximation of the model based
control strategy outlined previously. For the steady state, all velocities in the dynamics equations are assumed
zero. Therefore, all compensation terms with velocity dependence are zero:

b= J= h(e,é) - (4.39)
Thus, Equations (4.16) through (4.18), and Equation (4.28) gives:
74 = JIAMT [(CAG + KAz) — fu] + T  frn+ g (4.40)

Because no dynamic compensation is done in this scheme, the matrites, AM ~1C, andAM ~1 K can
be chosen to be diagonal gain matrices.

While not as accurate as the full dynamics representation, this approach has one major advantage. There is
no inverse of the Jacobian, which can become singular. Therefore, this type of control scheme is much more
robust but much less accurate, especially for situations in which the velocity is not really zero. However,
these differences disappear when the arm is constrained by a stationary environment. The following section
describes a control scheme which subscribed to this reduced dynamics framework.

4.5.1 Second Order Impedance Control

Second order impedance control without dynamics compensation has been investigated by Kazerooni [28]
and Hamilton [19]. The approach introduced by Kazerooni was to linearize the equations describing the
manipulator by considering small displacements only. Thus, the target second order impedance is present in
the following equation:

(Ms®>+Cs+K)éx=6f (4.41)

The manipulator dynamics, similar to Equation (4.6), are:

7= Dp(0)0 + hp(6,6) + gp(0) (4.42)
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wherer is the sum of torques given by:
r=T,ra+ J'F, (4.43)

whereT is the gear ratios, anfl, are the external forces. For the DD Arnilll = 1. From Equation (4.15)
it is known that:

F, = _fm (444)
Considering the small displacement approximation, these equations become:
B . Og -
T,or = D6 + 2 + J0fm (4.45)

In the following discussion, it will be assumed that the gravity compensation term is provided separate from
the impedance controller. Thus, this term will not appear explicitly again.
Also introduced in this development is a first order model of the actuator dynamics:

(57"Ai(t)

S brailt) = du(t)  i=12,...N (4.46)

where)\; is the bandwidth of each of th¥ actuators, and is the input signal. The introduction of the actu-
ator dynamics makes Kazerooni's development more precise for manipulators that have dynamics. However,
the DD Arm Il used later in the experiments of Chapter 6 does not have actuator dynamics. Also, this addi-
tion obscures the role of the impedance parameters in the final solution. Comparisons with other schemes,
therefore, become difficult. For the remainder of this discussion Hamilton’s formulation will be followed
instead.

Hamilton, while first introducing the actuator dynamics, neglects themiff large. In this case, the
control signal is assumed equal to the actuator torques:

TA; = Uj /\z — 00 (447)
The control law is chosen to be a generic linear controller based on position, velocity, and force feedback.
u=Gp0: —0m) — G, — Gy fn (4.48)

whereG; are the gain matirces to be chosen as in the Computed Torque metbaw be substituted for the
acceleration in Equation (4.45).

(Ds* + Kys + Kg) 00 = (JT = Kf) 6fm (4.49)

where K; are obtained front?; by including the gearing ratios. Comparing this equation for the physical
system under small perturbation, with that for the target impedance, Equation (4.41) gives the following
relations:

(JT+K;) " DI

C = (J'+K;) K, ! (4.50)
= (JT+K;) Ky
which can be inverted to give:
Ky = DJ Mt -Jt
K, = DJ*M~'CJ (4.51)

Ky = DJ'M'KJ



CHAPTER 4. DISCUSSION AND ANALYSIS OF IMPEDANCE CONTROL SCHEMES 56

or, using Equation (4.28) the inertia matrix can be transformed into Cartesian space:

Ky = JAM' - J"
K, = J'AMtCJ (4.52)
Ky = J'AM'KJ

Hamilton presents three methods for the selection of the gain matrices to ensure stability and positive def-
initeness. The first method, however, supercedes the other two. This method requires diagahadizihg
choosing the position and velocity gains in the resulting frame. This is equivalent to the method of gain
selection mentioned in the previous section. In fact, using Equations (4.52) with Equations (4.48), (4.47),
(4.43), (4.44), and (4.10) gives:

T = JIAM Y (-Kéx —Céi — f) + J fm+g (4.53)
= JIAM™' (-Kéz — Co3) + JT (L= AM™Y) f, (4.54)

The first equation is identical to Equation (4.40) as expected. The second equation is equal to Equation (4.38),
considering the steady state assumptions in Equation (4.39). Thus, this scheme is the same as the former
without the velocity dependent dynamics, as predicted.

4.6 Explicit Force Control within Impedance Control

The two second order impedance controllers reviewed above can be shown to contain explicit force control.
This aspect of impedance control has not previously been recognized. While Hogan recognized some cor-
respondence between Impedance Control and explicit force control [23], the relation was not specifically or
clearly stated. A general argument supporting this new interpretation was presented in the introduction. Now,
it will be shown explicitly for the impedance controllers described previously in this chapter. Later, it will be
shown how this framework includes both Stiffness Control, and Accommodation Control.

Consider the two second order impedance controllers represented by Equations (4.33) and (4.53), repeated
here for convenience:

r = JIAM ™Y (—=Kéx —Coi — f)) + J  frn+yg
r = JIAM™ (CAi+ KAz — f) — JTAJO + h + g + JT frm

These equations are the same except for the inclusion of velocity dependent dynamics, as previously dis-
cussed. Furthermore, the terms that compensate for velocity dependent forces and gravity can be considered
feedforward terms, and ignored for the remainder of this discussion. What is left is an equation for torque of
the form:

T o= J'K{(fe—fm) + I fn — T Kyiim (4.55)
fe = K(z.—z,)+ Ci, (4.56)
K{ = AM™! (4.57)

This formulation is very similar to the proportional gain explicit force controller discussed in Chapter 3.
Since velocity feedback was used in the explicit force controllers, the only major difference here is the use of
the feedback position in the calculation of the commanded force. The commanded velocity can be assumed
to be zero £, = 0), which is usually the case.

In the above formulation, the impedance parametérandC' determine the commanded force used in
an explicit force controller with a proportional gain &f\/ —*. The termJ7” f,, can be seen to negate the
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reaction force that is experienced by the arm. As expressed in the transfer function of Equation (3.9) the
stability of this controller is guaranteed fﬁff’ > 0. This is equivalent to the condition:

AM™ >0 (4.58)

(Again, itis assumed that the matricE# andA M ! are diagonal. Therefore the inequality is considered to
refer to each of the elements individually.) This loosely implies that the open loop pole location of the root
locus corresponds to the impedance paramiter oo and the zeros indicate a valuefaf — 0. Of course,

this statement is only true if the principal axes\odndM are parallel.

It is also important to note that force control is often used when the manipulator is in contact with a stiff
environment, and:,,, = 0 andz,, is an arbitrary constant, which can be set to zero. Thus, the commanded
force reduces to:

fe = Kae+ Ci. (4.59)

which has no dependence on position feedback. Again, it is the usual case that the commanded velocity is
zero. It can, therefore, be seen tlsatond order impedance control against a stiff environment is equivalent
to explicit force control with proportional gain and feedforward.

Finally, the presence of a proportional force controller inside the impedance controller presented leads to
the following question: Do other impedance controllers actually contain other types of explicit force control?
The answer is obviously yes. Two of the more famous ones will be reviewed next.

4.7 Impedance Control With Other Types of Explicit Force Control
4.7.1 Accommodation and Resolved Rate Control
Accommodation control has the following form [69, 68]:
T = Kﬂ(ar - em) + Kw(ér - em) (460)
0, = 6.— J 'Kpufm (4.61)

This formulation may be modified (using the Laplace domain representation):

r = ((s@d — J Ky Fr) — $0m) + K, (00 — J ' K Fp) — sOp,) (4.62)
= ( w) N Xg— Xp) = T K F) (4.63)
= ( ) L (sAX — K, Fy) (4.64)
= (JTK =Lk, J) J K (KplsAX - F) (4.65)
= T (K ff“ +K Kfa> (Kf‘alsAX - Fm) (4.66)

Thus, Accommodation Control has the form of an impedance controller with no dynamics compensation, and
a Pl internal force controller. Comparing with the form of the previous impedance controllers examined:

M = (K,Kp) " A (4.67)
C = Kg! (4.68)
K = 0 (4.69)
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Thus, this controller provides no stiffness to the arm, and a damping that is inversely proportional to the
accommodation gain. The apparent inertia of the arm can be modified by the proportional gain as previously
discussed. However, the integral gait), K s,, does not cleanly map into physical impedance analog.

Itis also important to note that the Pl gain matricks K s, andK, K ra are not diagonal. This is because
the original gainsKy and K, where diagonal in joint space. Obviously, if decoupled Cartesian behavior is
desired the matrices should be chosen diagonal in Cartesian space, not joint space.

Finally, it can be seen that the removal of a force feedback sidfal= 0, gives a PI controller which
follows a commanded damping force only. This controller is usually expressed in the form of Equation (4.64).
Because the inverse Jacobian is used to resolve the Cartesian velocities into joint space, this is known as
Resolved Rate Control.

4.7.2 Stiffness Control

Stiffness control has the following form [54]:

s+a Ky,

T. = 1T, + Ky (G)c — G)m) (471)
Ky = J'K,J 4.72)

where K, is a diagonal Cartesian gain matrik, is a bias torque vectofs + a)/(s + b) is lead-lag filter.
The bias torque can be eliminated by considering the following identity:

T, = J'F, = J'K,AX, = J' (JU) 7 KoJ 'AX, = KyA8, (4.73)
Thus the bias commanded position can be offset by a bias value in either Cartestian or joint space:
AO = (0. + K, 'T}) — O (4.74)

The above expression of Stiffness control can be modified so that it can be more easily compared with
the developed framework.

Kys
T = K,sA0 + JTK,JAO + Ky, [Zi‘; + Tf} (JTK,JAO —T},) (4.75)
Kys
= K,sAO + JTK,AX + K, Si‘; + —f] JT (K,AX — F,) (4.76)
S S

In this form, Stiffness control can be seen to be a variation of Impedance Control with an internal force
controller that uses integral and lead-lag compensation, and a feedforward signal. While, the impedance
stiffness parameter is obviou&' (= K,), other correspondence is not so strict. The active damping is
performed in joint space and is not passed though the explicit force controller. Inertial modification does not
appear since there is not proportional force gain. However, this controller was designed for stiffness control
only, and modification of other impedance characteristics is not a design goal. Therefore, this is a zeroth
order, or at best a first order impedance controller.

4.8 Conclusion

This chapter has provided a review of some of the major Impedance Control strategies that have been pro-
posed. Itis well known that the stiffness and damping of the manipulator can be modified by position and
velocity feedback. This is usually the type of control that is provided in position controlled arms. However,
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if the manipulator is to interact with the environment, then force sensing is usually employed in a method of
actively modifying the apparent inertia of the manipulator. This force feedback loop constitutes an inner loop
explicit force controller.

This chapter has made clear for the first time the fact that impedance control schemes that modify the
arm’s inertia are effectively using explicit force control with proportional gain and feedforward (plus a damp-
ing term). In this case, inertial modification is equivalent to changing the force control gain. Further, for a
stiff environment the second order impedance control is equivalent to proportional gain force control. This
will be demonstrated experimentally in Chapter 6.

Finally, recognition of equivalence of second order impedance control to explicit force control with
proportional gain has provided some new understanding. The first insight is that other impedance control
schemes contain other explicit force control strategies (Pl for example). However, pursuing these different
impedance control strategies does not seem worthwhile when the explicit force controllers can be used di-
rectly. A second insight is that proportional force control gains down to negative one can be stably used, and
are equivalent to impedance mass ratios increasing to infinity. This knowledge is extremely useful for the
stable control of impacts with the environment, as will be discussed in the next chapter.



Chapter 5

Impact Control

5.1 Introduction

There are two extreme modes of operation for a manipulator: position controlled motion through free space,
and force controlled interaction while constrained by the environment. Obviously the manipulator must
change from one mode to the other readily. Usually switching from constrained force control to uncon-
strained position control presents no problems. However, switching from free space motion to constrained
force control has the significant problem of impact forces. These forces can be very large, and can drive an
otherwise stable controller into instability. Typically, it is the force control strategy that must deal with this
transient phenomenon, since the large force does not occur until after contact has occurred. However, the nat-
ural elasticity of an impact, or the response of the force controller to the transient, can cause the manipulator
to rebound from the environment. Thus, the manipulator is once again unconstrained. This phenomenon can
establish oscillatory behavior. Obviously it is the goal of any controller to pass through this transitory period
successfully, and have the manipulator stably exerting forces on the environment in the end. The controller
must, therefore, pass through the impact phase by attempting to maintain contact with the environment until
all of the energy of impact has been absorbed. To maintain stability and contact during this phase, a novel
method ofimpact controls presented in this chapter.

Previous research in force control has treated the impact phase as a transient that is dealt with by the same
controller used to follow commanded force. The form of the force controller is typically one of those strate-
gies that has been presented in Chapters 3 and 4. In this chapter it will be shown that the best implementation
of these strategies for force following is insufficient for impact control. But, the impact controller presented
here still fits into the complete framework of force control that has been developed. To understand this, the
previous schemes will be briefly discussed and their weaknesses revealed. Then a newly proposed impact
control strategy will be presented in the context of explicit force control and impedance control.

5.2 Previously Proposed Methods For Impact Control

Previous work in force control has not employed any changes in the force controller structure (variable gains

or controller type). Instead the impact phase is treated as a transient that must be dealt with by the controller
and gains chosen for force control (once contact has been established). At most, modification of the control
strategy has been attempted through active damping and/or passive compliance and damping.

5.2.1 Maximal Active Damping

One proposed method of dealing with the impact problem is to employ maximal damping during the impact
phase [31]. Any force controller may be used; proportional control was used in this reference. The goal of
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this strategy is to damp out the oscillations caused by the transition. While this may be successful for soft
environments, stiff environments have oscillations with small amplitudes and high frequencies. This makes
damping difficult for two reasons. First, changes in position of the environmental surface may be smaller than
the resolution of the manipulator’s position measurement devices. In this case, no velocity will be sensed.
Second, for fast oscillations the calculated velocity signal will lag its ideal value and the damping force may
cause instability by being applied out of phase with the true velocity of the surface. This phase lag problem
will be discussed in Section 6.7.1. These problems are compounded by the fact that a stiff environment which
causes them will also cause a larger impact force and need active compensation the most. Thus, this scheme
fails when most needed.

5.2.2 Passive Compliance and Damping

Another method for absorbing the shock of impact is to use passive compliance, either on the end effector
or in the environment. Some researchers have proposed the use of soft force sensors [53, 71]. Another
suggests the use of compliant ‘skin’ for the force sensor [1]. These methods appear to provide stable impact
in two ways. First, the material used naturally provides passive damping that helps absorb some of the energy
of impact, without the resolution or time lag problems of active damping. Second, the compliance of the
material lessens the effective stiffness of the system. Following from the argument of the last paragraph, this
lessening of the stiffness helps active damping work. Because the end effector remains in contact with the
environment over larger ranges of displacements for the same experienced force, the displacement will not
be below the resolution of the arm’s position measurement devices. Thus a velocity may be determined and
active damping employed.

There are problems with passive compliance. First, it may not be modified without physical replacement
of the material. Second, it limits the effective stiffness of the manipulator during position control. Third, it
eliminates precise knowledge of the position of the environment. And fourth, it limits the forces that may be
applied — beyond a certain range of operation the compliant material is not linear and is prone to physical
failure.

5.2.3 Integral Explicit Force Control

As was discussed in Chapter 3, integral force control acts as a low pass filter. Thus, for impact transients, the
high frequency components might be filtered effectively. For impacts with low energy or with an inelastic
environment this may be sufficient. Otherwise, bouncing may occur for high energy impacts or stiff envi-
ronments. Results consistent with this analysis have been reported [74]. However, the conclusion presented
in this reference is that integral control (with damping) is best for impact. This contradicts the experimental
results obtained with the DD Arm Il and reported in Chapter 6. There, integral control is shown to be very
oscillatory (at best) during impacts. This is because of the nonlinearity introduced by loss of contact with the
surface. This nonlinearity makes the system model invalid and the stability predictions false for impacts. The
result is integrator windup and severe hopping on the surface.

5.2.4 Impedance Control and Proportional Explicit Force Control

As was described in the previous chapter impedance control against a stiff environment is equivalent to
explicit force control with proportional gain. This type of scheme has been tried by many researchers [23,
27, 31, 73, 1]. However, the proportional gain in these implementations is not tuned for the best impact
response. For explicit force controllers the gain is tuned for optimal command following once contact has
been established. For impedance schemes, the proportional gain is chosen to obtain the desired inertia for
free space motion or force exertion, but not impact. These implementations place the poles well off the real
axis in Figure 3.2. Thus the resultant system is oscillatory and bouncing will occur after impact. This is
consistent with simulation and experimental results [14, 1]. A solution to this problem is to use a different
proportional gain for the impact phase. This will be discussed in the next section.
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Figure 5.1: Root locus for the second order model under proportional gain explicit force control.

5.3 Impact Control

Impact control is best introduced in a discussion that involves a simplified system without sensor dynamics.
This is equivalent to removing the sensor poles from the model developed in Chapter 2. After the initial

discussion without sensor dynamics, the full fourth order model will be used as the plant of the impact

controller. All model parameter values for the analyses are from Chapter 2.

5.3.1 Impact Control Without Sensor Dynamics

The model of the arm / environment plant that neglects sensor dynamics was developed in Section 2.4.
The block diagram of the plant is shown in Figure 2.9 and the corresponding transfer function is given by
Equation (2.18). For a proportional gain explicit force controller with this plant, the root locus is shown in
Figure 5.1. (Comparing this locus with that of Figure 3.2 shows the effect of ignoring the sensor poles.) If the
proportional gain is made negative, the resultant root locus is the complement of the previous one, as shown
in Figure 5.2. It can be seen that for very small and very large negative gains, the poles are in the left half
plane and the system is stable. The case of very large gains will be ignored, since the model will surely be
invalid under this extreme due to nonlinearities and modelling errors. However, for small negative gains the
model is valid and the system is stable. Further, the roots move to the real axis, eliminating any oscillatory
behavior. Figure 5.3 shows an enlargement of this part of the locus. The root locus crosses into the right half
plane forK s, < —1. This is consistent with the analysis of proportional force control in Section 3.2.2. In that
section it was shown that for a proportional gain explicit force controller, elimination of feedforward signal
and inclusion of a reaction force feedback compensation signal provides an equivalent controller with gain
K'p, = Ky, — 1. Thus, the root locus may be expressed in term&bf, as in Figure 5.4. Observing this

root locus it is immediately apparent that the most stable gain is the one that places the two poles at the point
where the roots leave the real axis. Ignoring the sensor dynamics, an approximate value of this gain may
easily be determined. Using the notation of Section 2.5 and the proportional force controller of Figure 3.5
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Figure 5.2 Root locus for the second order model under negative proportional gain explicit force control.
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Figure 5.3 Root locus for the second order model under negative proportional gain explicit force control for
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the transfer function of this system is:

Fn _ _KjAE (5.1)
F 1+ K}AE
which has the characteristic equation:
(my + Kjme)s® + (Ky + Kjce)s + Kfke =0 (5.2)

The roots of this system are at:

—(K, + Kje.) £ \/(K,, + Kheo)? — d(my + Kjme) Kk,

5T 2(my + Kjyme) (5:3)

The system is critically damped when the argument of the radical is zero. This criterion yields a second order
equation inK}:

(c2 — 4meke) KF + (2ce Ky — 4myke) K + K (5.4)
which has the roots:

K - (4m, k. — 2¢.K,) £ \/(4m,ke —2¢.K,)? —4(c2 — dm k. ) K? (5.5)
ro 2(c2 — 4m.k,) '

_ (4mrke _2ceKv):|:4\/m%kg _mrkeceKU+mekng (5 6)
- Q(Cg - 4m6k6) |

(dmyke — 2¢. Ky) + 4my ke
—8m ke

X

(5.7)

c. K,
dmek,

(5.8)

X
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using the previously verified assumption of laige and considering only the positive root. Thus, the double
root of the characteristic equation occurs for quite a small value of the proportional gain. There are three
equivalent ways to view this result;

Proportional force control with reaction force compensation. This is the controller in Figure 3.6. In

this case, the controller does not utilize the force error signal ez 0. However, the reaction force of

the impact is directly negated by a feedback signal. Viewed this way, the impact controller does not bounce
because the oscillations in the commanded force and those in the experienced force are equal and opposite.
Thus the surface is at a node of two interfering pressure waves. No net force means no net acceleration. Any
initial oscillation is damped out by natural and active damping.

Proportional force control with negative gain and a feedforward signal. This is the controller in Fig-

ure 3.5. While this controller looks different than above, it has been shown in Section 3.2.2 that it is equivalent
to proportional force control with reaction force compensation. In this case the controller multiplies the force
errorbyKy = K} — 1=~ —1. Thereis also a feedforward signal of the commanded force.

Second order impedance controller with large target mass. As discussed in Chapter 4, a second order
impedance controller is equivalent to a explicit force controller when in contact with a stiff environment.
Second order impedance controllers employ a proportional gadd,!, whereA is the arm mass, and

M is the desired mass. Viewed in this way, the impact controller matches the apparent mass of the arm
to the stiffness and damping of the environment such that the resultant system is critically damped. More
imprecisely, it can be said that the arm is made to appear so massive that it can’t bounce.

Finally, it is worthwhile to look at the Bode plots for this system in Figure 5.5. The negative proportional
gain, or the reaction force feedback compensation (depending on the representation) causes the system re-
sponse to be greatly out of phase with the disturbance. At the resonance frequen@y afd/sec, this phase
difference is~ 140°. Thus, the disturbance force and the response to it destructively interfere, and cancel the
force oscillations due to impact.

5.3.2 Impact Control With Sensor Dynamics

Including the sensor dynamics may change the above analysis somewhat by introducing an additional set of
poles. Obviously, if the sensor poles are far from the environmental poles they will have little effect, and the
above results will remain the same. However, the fourth order model that was previously developed has one
pole relatively close to the environmental poles and zeros. The effect on the root loeuspis shown in

Figure 5.6. The major difference introduced by the sensor pole is that the environmental poles never become
purely real. However, they do move closer to the real axis, and achieve their minimum imaginary parts for
values ofK g, near negative onel{y, ~ —0.8). Figure 5.7 shows the locus ferl < Ky, < 0. Also, the

sensor pole moves to the right on the real axis and passes the environmental pole pair. Thus, for gains close to
negative one, this pole act as a lowpass filter, eliminating oscillations. For completeness the entire root locus
for -1 < Kp <ooor0 < K}p < oo is shown in Figure 5.8.

5.4 Conclusion

This chapter has presented a new impact control strategy based on a proportional gain explicit force controller
with a feedforward signal and negative gains. It has been shown previously and in this chapter that this
controller is equivalent to second order impedance control with a large target mass. It is readily apparent that
this impact control method can not be used for tracking input force commands since the input force command
is largely ignored. However, it still provides an excellent method of maintaining stability and contact with
the environment during the transition from motion through free space to contact with the environment. Once
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Figure 5.5 Bode plots for the second order system under negative proportional gain explicit force control.
The phase at the resonance peak is approximat#ly. Thus, the force response of the system is out of
phase with the disturbance from the environment, causing cancellation.
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Figure 5.6. Root locus for the fourth order model under negative proportional gain explicit force control.
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Figure 5.8 Root locus for the fourth order model ferl < K, < co0r0 < K, < co.

contact has been established and the energy of impact has been dissipated, one of the previously discussed
force control strategies may be employed.



Chapter 6

Experimental Results

6.1 Introduction

This chapter presents the data obtained from the implementation of the explicit force, impedance, and impact
control strategies discussed previously. All experiments were performed with the CMU DD Arm Il and
implemented under the Chimera Il real time operating sytem [57] with the computer architecture described in
Appendix B. This experimental review of force control methodologies is unique in its breadth — never has
such a complete spectrum of strategies been implemented on the same system. The commonality amongst
the experiments has permitted the ability to objectively compare and contrast these strategies, and draw
conclusions about the efficacy of each. The results support the previous analysis and show: the superiority of
integral force control for force trajectory tracking, the near equivalence of second order impedance control
and proportional gain explicit force control, and the effectiveness and stability of the proposed impact control
strategy.

First in this chapter, data collected from explicit force control strategies is presented. These include
proportional control with feedforward, integral control, and proportional—derivative control. Then, the results
of second order impedance control with and without dynamics compensation is shown. Impact control, in
its two manifestations of proportional explicit force control and impedance control, was also implemented
and compared. All of these tests were conducted using the environment modelled in Chapter 2. The results
compare excellently with the analysis of Chapters 3, 4, and 5. Finally, results are presented from tests
conducted with the best of these controllers on a very stiff environment.

6.2 Explicit Force Control

This section presents the results of implementing the explicit force control schemes presented in Chapter 3.
All of these schemes were implemented in a hybrid control framework in which the force was controlled in

one direction (world frame axis), and all other directions were position controlled. To be consistent with

the arm / sensor / environmental model developed, active damping was provigeg (10) in the force

controlled direction. The control rate was 300 Hz. The chosen reference force trajectory has steady state,
step, and ramp components and is shown as a dashed curve in all of the graphs. The measured force response
of the system is shown as a solid curve.

6.2.1 Proportional Gain with Feedforward Control

The first controller to be discussed is proportional gain force control with the reference force fedforward. The
exact form of the control law used is:

T = JT[fC_'_Kfp(fC_fm) - Kvxm] + g. (61)
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Figures 6.1 (a) through (h) show the response of this controller to the commanded force trajectory. There are
several things to note about the response profiles to variations in the proportional gain. First, as predicted by
the model, the system exhibits the characteristics of a Type 0 system: finite steady state error for a step input
and unbounded error for a ramp input. Second, for an increase in position gain, the steady state error reduces,
but at the cost of increasingly larger overshoot. As correctly predicted by the root locus of developed system
model in Figure 3.3, this control scheme causes instabilify gt~ 1. Also, the fact that the environmental
poles are always off the real axis can be seen in the steady state oscillations that occur at the system’s natural
frequency & 15 Hz), particularly after the step input. Finally, it can be seen that negative proportional gains
are increasingly more stable, but the response of the system approachesEgyo-as-1.

One possible improvement to the performance to steady state error of this controller is to increase the
feedforward signal by a factor that would make that error small for the open loop &age={ 0). Fig-
ure 6.1 (d) shows that a feedforward term of approximatelyf. would be necessary. This, however, would
not eliminate the oscillations that are present, especially after the step input.

6.2.2 Integral Gain Control

Integral explicit force control was implemented with the following form of control law:

- [Kﬂ [ = fyit = K| + . 6.2)

Figures 6.2 (a) through (e) show the response of this controller to the commanded force trajectory. The most
notable aspect of this controller is the dominance of the integrator pole on the real axis for low gains. This
causes the system to be Type 1, as is apparent from the zero steady state error to the step input and constant
error to the ramp input. As predicted, this pole acts as a low pass filter until it moves past the environment
poles. This happens gradually as the gain increasesiast 10 as shown in the root locus diagram of
Figure 3.8. Also predicted by that model is that the system becomes unstable for gaifSsnead0. The

real system is not unstable uniil; reaches the upper thirties, which implies a small modelling error. Also,

the model previously presented does not explain the nonlinear response séep fer37.5. For a linear
system, the envelopes of the two dominant oscillations would be the same, which is obviously not the case.
This limitation of the model is not significant, since it does not manifest itself within the desirable operating
range of this controller.

6.2.3 PD Control

Proportional / Derivative control was also implemented. Simple differencing of the measured force signal to
obtain the derivative was unsuccessful because of the extremely noisy nature of the force signal. Therefore,
the force feedback signal was lowpass filtered by using the transfer furictior /(s + a) in the feedback

path in Figure 3.1. The reference signal is not filtered. Therefore, the implemented control law in the Laplace
domain is:

a
s+a

(s) = J' { Fe(s) + [Kpp + Kus] [Fc(s) - ( >Fm(s)] + K,,SX(S)} + g (6.3)

Figure 6.3 shows the response of the system, as well as the reference force and filtered force (long dash
curve), forKy, = 0.5, Ky = 0.01, anda = 10. The results are not much better than for proportional gain
alone. As will be described below, improvements in the performance of this controller can not be made by
varying the gains given here.

First, increasing the derivative gain does not improve the response of the system because the amplified
low frequency noise can still drive the system unstable. While Figure 6.3 seems to show a fairly smooth
filtered force signal, Figure 6.4 shows a closer view of a section of the curve. Obviously, much of the noise
has been removed, but some still remains. With a large enough gain the noise will dominate. Moving the
filter pole to the right¢ < 10) will eliminate this noise, but it introduces a more serious problem of lag.
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Figure 6.1: (continued) Experimental data of proportional gain explicit force control with feedforward. The
proportional gain varies from -0.75 to 1.

Figure 6.5 shows that the calculated derivative (solid curve) appears accurate. (The dotted curve is the
measured force.) However, it is apparent from this figure and Figure 6.3 that there is lag introduced by the
filtering process. This lag becomes extremely important when it is a significant portion of the period of
oscillation of the system. Figure 6.6 shows the original force signal (solid), the filtered force signal (short
dash), and the derivative of the filtered signal (long dash). For this oscillation frequency, the filtering process
causes the filtered force to lag the measured force by one quarter cycle. This makes the ford8&igmatl
of phase with the ideal derivative signal. Thus, the proportional gain act as a destabilizing negative derivative
gain. Further, the derivative of the filtered signal leads it by one quarter cycle. Thus, the derivative is in phase
with the originally measured force and the derivative gain acts as a proportional gain. Increasing the derivative
gain causes greater oscillations exactly when the effective damping is being reduced by the proportional gain.
This obviously will cause the system to go unstable.

It can be concluded from this discussion than the filter pole should be significantly larger than the natural
frequency of the system, However, it also must be small enough to effectively filter the noise of the force
sensor. These two criteria could not be met with our system. To be fair, most systems will never meet
this criteria. Force controlled systems are most challenged by stiff environments that have high natural
frequencies. It is unlikely that a sensor can be built that has noise only at frequencies much greater than the
natural frequencies of these environments.

One solution, however, is to use a soft force sensor or compliant covering on the sensor. The compliance
acts as a lowpass filter with no time delay. In this way, the derivative of the force signal may be used under the
condition that the time necessary to calculate it is not significant. In this case, without a noisy force signal,
simple differencing of the current and most recent force samples will usually suffice. Thus, all that is required
is that the force sampling frequency is not of the same order of magnitude as the natural frequency of the
system. Successful PD force control with a soft force sensor has been reported elsewhere [71].
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Figure 6.2 Experimental data of integral gain explicit force control feedforward. The integral gain varies

from 7.5 to 37.5.
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6.2.4 Second Order Low Pass Filter Control

As discussed in Section 3.3.1, a second order low pass filter controller has been implemented. The following
control law was used:

7(s) = JT % (Fe(s) — Fiu(s)) + Kys X(s)| + ¢- (6.4)
Figures 6.7 show the response of this system for three distinct regions of operation: filter poles meeting on
the real axis to the right of, near, and to the left of the environment poles. This behavior was previously shown
if Figure 3.17.

Figures 6.7 (a) through (c) show the responsesfer 15 and increasing gaiik 5,. Referring to the root
locus in Figure 3.17, it can be see that the rightmost pole dominates in (a), until the two poles on the real axis
meet in (b), and then leave the real axis in (c). For the small gain case, the dominant pole acts much like the
single pole of the integral controller presented previously. Becaisemall, the filter poles meet to the right
of the environmental poles and dominate the response for low frequencies. Notice that the oscillations present
in (c) are not close to the natural frequency of the environment, as was true with the previous controller results
presented.

Figures 6.7 (d) through (f) show the responsedet 45 and increasing gaifl ,. Again, the three graphs
refer to the poles spread on the real axis (d), together on the real axis (e), and off the real axis (f). Again,
the one filter pole dominates for low gains, making the response look like integral control. The response
continues to look like integral control as the poles meet in the vicinity of the environmental poles (e). The
response in Figure 6.7 (e) was the best obtained with this controller. In (f) the poles have again moved off the
real axis, as indicated by the oscillations.

Finally, Figures 6.7 (g) through (i) show the responsedct 180 and increasing gaif 5,. Again, the
three graphs refer to the poles spread on the real axis (g), together on the real axis (h), and off the real axis (i).
Again, the first two graphs look much like integral control. However, this time the third graph also looks like
integral force control with gain that is too high. This is intuitively correct since the meeting point of the filter
poles for such a high value afis to the left of the environment poles. Thus, the right filter pole acts like the
integral control pole until it is moves far to the left of the environment poles, at which point its influence is
negligible. The influence of the second filter pole remains negligible throughout.

Thus, it can 